Category Archives: Threat Intelligence

Exploring the prolific threats influencing the cyber landscape

Some of the world’s most skilled nation-state cyber adversaries and notorious ransomware gangs are deploying an arsenal of new open-sourced tools, actively exploiting corporate email systems and using online extortion to scare victims into paying ransoms, according to a report from Accenture. The report examines the tactics, techniques and procedures employed by some of the most sophisticated cyber adversaries and explores how cyber incidents could evolve over the next year. “Since COVID-19 radically shifted the … More

The post Exploring the prolific threats influencing the cyber landscape appeared first on Help Net Security.

Threat intelligence platform market to reach $234.9 million by 2022

The growing volume and complexities of cyber threats present a compelling case for adopting threat intelligence platforms (TIPs), a Frost & Sullivan analysis finds. These solutions help organizations navigate the ever-increasing threat landscape and allow for further analysis and threat intelligence operationalization. The TIP market least affected by the pandemic The yhreat intelligence platform market is one of the cybersecurity markets that will be least affected by COVID-19. It is estimated to reach $234.9 million … More

The post Threat intelligence platform market to reach $234.9 million by 2022 appeared first on Help Net Security.

FIN11: Widespread Email Campaigns as Precursor for Ransomware and Data Theft

Mandiant Threat Intelligence recently promoted a threat cluster to a named FIN (or financially motivated) threat group for the first time since 2017. We have detailed FIN11's various tactics, techniques and procedures in a report that is available now by signing up for Mandiant Advantage Free.

In some ways, FIN11 is reminiscent of APT1; they are notable not for their sophistication, but for their sheer volume of activity. There are significant gaps in FIN11’s phishing operations, but when active, the group conducts up to five high-volume campaigns a week. While many financially motivated threat groups are short lived, FIN11 has been conducting these widespread phishing campaigns since at least 2016. From 2017 through 2018, the threat group primarily targeted organizations in the financial, retail, and hospitality sectors. However, in 2019 FIN11’s targeting expanded to include a diverse set of sectors and geographic regions. At this point, it would be difficult to name a client that FIN11 hasn’t targeted.

Mandiant has also responded to numerous FIN11 intrusions, but we’ve only observed the group successfully monetize access in few instances. This could suggest that the actors cast a wide net during their phishing operations, then choose which victims to further exploit based on characteristics such as sector, geolocation or perceived security posture. Recently, FIN11 has deployed CLOP ransomware and threatened to publish exfiltrated data to pressure victims into paying ransom demands. The group’s shifting monetization methods—from point-of-sale (POS) malware in 2018, to ransomware in 2019, and hybrid extortion in 2020—is part of a larger trend in which criminal actors have increasingly focused on post-compromise ransomware deployment and data theft extortion.

Notably, FIN11 includes a subset of the activity security researchers call TA505, but we do not attribute TA505’s early operations to FIN11 and caution against using the names interchangeably. Attribution of both historic TA505 activity and more recent FIN11 activity is complicated by the actors’ use of criminal service providers. Like most financially motivated actors, FIN11 doesn’t operate in a vacuum. We believe that the group has used services that provide anonymous domain registration, bulletproof hosting, code signing certificates, and private or semi-private malware. Outsourcing work to these criminal service providers likely enables FIN11 to increase the scale and sophistication of their operations.

To learn more about FIN11’s evolving delivery tactics, use of services, post-compromise TTPs, and monetization methods, register for Mandiant Advantage Free. The full FIN11 report is also available through our FireEye Intelligence Portal (FIP). Then for even more information, register for our exclusive webinar on Oct. 29 where Mandiant threat intelligence experts will take a deeper dive into FIN11, including its origins, tactics, and potential for future activity. 

‘Ghostwriter’ Influence Campaign: Unknown Actors Leverage Website Compromises and Fabricated Content to Push Narratives Aligned With Russian Security Interests

Mandiant Threat Intelligence has tied together several information operations that we assess with moderate confidence comprise part of a broader influence campaign—ongoing since at least March 2017—aligned with Russian security interests. The operations have primarily targeted audiences in Lithuania, Latvia, and Poland with narratives critical of the North Atlantic Treaty Organization’s (NATO) presence in Eastern Europe, occasionally leveraging other themes such as anti-U.S. and COVID-19-related narratives as part of this broader anti-NATO agenda. We have dubbed this campaign “Ghostwriter.”

Many, though not all of the incidents we suspect to be part of the Ghostwriter campaign, appear to have leveraged website compromises or spoofed email accounts to disseminate fabricated content, including falsified news articles, quotes, correspondence and other documents designed to appear as coming from military officials and political figures in the target countries.

This falsified content has been referenced as source material in articles and op-eds authored by at least 14 inauthentic personas posing as locals, journalists and analysts within those countries. These articles and op-eds, primarily written in English, have been consistently published to a core set of third-party websites that appear to accept user-submitted content, most notably OpEdNews.com, BalticWord.com, and the pro-Russian site TheDuran.com, among others, as well as to suspected Ghostwriter-affiliated blogs.

Some of these incidents and personas have received public attention from researchers, foreign news outlets, or government entities in Lithuania and Poland, but have not been tied to a broader activity set. Others have received little attention and remain relatively obscure. Mandiant Threat Intelligence has independently discovered several Ghostwriter personas and identified additional incidents involving some of those personas previously exposed.

We believe the assets and operations discussed in this report are for the first time being collectively tied together and assessed to comprise part of a larger, concerted and ongoing influence campaign.

Read the report today to learn more.

Putting the Model to Work: Enabling Defenders With Vulnerability Intelligence — Intelligence for Vulnerability Management, Part Four

One of the critical strategic and tactical roles that cyber threat intelligence (CTI) plays is in the tracking, analysis, and prioritization of software vulnerabilities that could potentially put an organization’s data, employees and customers at risk. In this four-part blog series, FireEye Mandiant Threat Intelligence highlights the value of CTI in enabling vulnerability management, and unveils new research into the latest threats, trends and recommendations.

Organizations often have to make difficult choices when it comes to patch prioritization. Many are faced with securing complex network infrastructure with thousands of systems, different operating systems, and disparate geographical locations. Even when armed with a simplified vulnerability rating system, it can be hard to know where to start. This problem is compounded by the ever-changing threat landscape and increased access to zero-days.

At FireEye, we apply the rich body of knowledge accumulated over years of global intelligence collection, incident response investigations, and device detections, to help our customers defend their networks. This understanding helps us to discern between hundreds of newly disclosed vulnerabilities to provide ratings and assessments that empower network defenders to focus on the most significant threats and effectively mitigate risk to their organizations. 

In this blog post, we’ll demonstrate how we apply intelligence to help organizations assess risk and make informed decisions about vulnerability management and patching in their environments.

Functions of Vulnerability Intelligence

Vulnerability intelligence helps clients to protect their organizations, assets, and users in three main ways:


Figure 1: Vulnerability intelligence can help with risk assessment and informed decision making

Tailoring Vulnerability Prioritization

We believe it is important for organizations to build a defensive strategy that prioritizes the types of threats that are most likely to impact their environment, and the threats that could cause the most damage. When organizations have a clear picture of the spectrum of threat actors, malware families, campaigns, and tactics that are most relevant to their organization, they can make more nuanced prioritization decisions when those threats are linked to exploitation of vulnerabilities. A lower risk vulnerability that is actively being exploited in the wild against your organization or similar organizations likely has a greater potential impact to you than a vulnerability with a higher rating that is not actively being exploited.


Figure 2: Patch Prioritization Philosophy

Integration of Vulnerability Intelligence in Internal Workflows

Based on our experience assisting organizations globally with enacting intelligence-led security, we outline three use cases for integrating vulnerability intelligence into internal workflows.


Figure 3: Integration of vulnerability intelligence into internal workflows

Tools and Use Cases for Operationalizing Vulnerability Intelligence

1. Automate Processes by Fusing Intelligence with Internal Data

Automation is valuable to security teams with limited resources. Similar to automated detecting and blocking of indicator data, vulnerability threat intelligence can be automated by merging data from internal vulnerability scans with threat intelligence (via systems like the Mandiant Intelligence API) and aggregated into a SIEM, Threat Intelligence Platform, and/or ticketing system. This enhances visibility into various sources of both internal and external data with vulnerability intelligence providing risk ratings and indicating which vulnerabilities are being actively exploited. FireEye also offers a custom tool called FireEye Intelligence Vulnerability Explorer (“FIVE”), described in more detail below for quickly correlating vulnerabilities found in logs and scans with Mandiant ratings.

Security teams can similarly automate communication and workflow tracking processes using threat intelligence by defining rules for auto-generating tickets based on certain combinations of Mandiant risk and exploitation ratings; for example, internal service-level-agreements (SLAs) could state that ‘high’ risk vulnerabilities that have an exploitation rating of ‘available,’ ‘confirmed,’ or ‘wide’ must be patched within a set number of days. Of course, the SLA will depend on the company’s operational needs, the capability of the team that is advising the patch process, and executive buy-in to the SLA process. Similarly, there may be an SLA defined for patching vulnerabilities that are of a certain age. Threat intelligence tells us that adversaries continue to use older vulnerabilities as long as they remain effective. For example, as recently as January 2020, we observed a Chinese cyber espionage group use an exploit for CVE-2012-0158, a Microsoft Office stack-based buffer overflow vulnerability originally released in 2012, in malicious email attachments to target organizations in Southeast Asia. Automating the vulnerability-scan-to-vulnerability-intelligence correlation process can help bring this type of issue to light. 

Another potential use case employing automation would be incorporating vulnerability intelligence as security teams are testing updates or new hardware and software prior to introduction into the production environment. This could dramatically reduce the number of vulnerabilities that need to be patched in production and help prioritize those vulnerabilities that need to be patched first based on your organization’s unique threat profile and business operations.

2. Communicating with Internal Stakeholders

Teams can leverage vulnerability reporting to send internal messaging, such as flash-style notifications, to alert other teams when Mandiant rates a vulnerability known to impact your systems high or critical. These are the vulnerabilities that should take priority in patching and should be patched outside of the regular cycle.

Data-informed intelligence analysis may help convince stakeholders outside of the security organization the importance of patching quickly, even when this is inconvenient to business operations. Threat Intelligence can inform an organization’s appropriate use of resources for security given the potential business impact of security incidents.

3. Threat Modeling

Organizations can leverage vulnerability threat intelligence to inform their threat modeling to gain insight into the most likely threats to their organization, and better prepare to address threats in the mid to long term. Knowledge of which adversaries pose the greatest threat to your organization, and then knowledge of which vulnerabilities those threat groups are exploiting in their operations, can enable your organization to build out security controls and monitoring based on those specific CVEs.

Examples

The following examples illustrate workflows supported by vulnerability threat intelligence to demonstrate how organizations can operationalize threat intelligence in their existing security teams to automate processes and increase efficiency given limited resources.

Example 1: Using FIVE for Ad-hoc Vulnerability Prioritization

The FireEye Intelligence Vulnerability Explorer (“FIVE”) tool is available for customers here. It is available for MacOS and Windows, requires a valid subscription for Mandiant Vulnerability Intelligence, and is driven from an API integration.


Figure 4: FIVE Tool for Windows and MacOS

In this scenario, an organization’s intelligence team was asked to quickly identify any vulnerability that required patching from a server vulnerability scan after that server was rebuilt from a backup image. The intelligence team was presented with a text file containing a list of CVE numbers. Users can drag-and-drop a text readable file (CSV, TEXT, JSON, etc.) into the FIVE tool and the CVE numbers will be discovered from the file using regex. As shown in Figure 6 (below), in this example, the following vulnerabilities were found in the file and presented to the user. 


Figure 5: FIVE tool startup screen waiting for file input


Figure 6: FIVE tool after successfully regexing the CVE-IDs from the file

After selecting all CVE-IDs, the user clicked the “Fetch Vulnerabilities” button, causing the application to make the necessary two-stage API call to the Intelligence API.

The output depicted in Figure 7 shows the user which vulnerabilities should be prioritized based on FireEye’s risk and exploitation ratings. The red and maroon boxes indicate vulnerabilities that require attention, while the yellow indicate vulnerabilities that should be reviewed for possible action. Details of the vulnerabilities are displayed below, with associated intelligence report links providing further context.


Figure 7: FIVE tool with meta-data, CVE-IDs, and links to related Intelligence Reports

FIVE can also facilitate other use cases for vulnerability intelligence. For example, this chart can be attached in messaging to other internal stakeholders or executives for review, as part of a status update to provide visibility on the organization’s vulnerability management program.

Example 2: Vulnerability Prioritization, Internal Communications, Threat Modeling

CVE-2019-19781 is a vulnerability affecting Citrix that Mandiant Threat Intelligence rated critical. Mandiant discussed early exploitation of this vulnerability in a January 2020 blog post. We continued to monitor for additional exploitation, and informed our clients when we observed exploitation by ransomware operators and Chinese espionage group, APT41.

In cases like these, threat intelligence can help impacted organizations find the “signal” in the “noise” and prioritize patching using knowledge of exploitation and the motives and targeting patterns of threat actors behind the exploitation. Enterprises can use intelligence to inform internal stakeholders of the potential risk and provide context as to the potential business and financial impact of a ransomware infection or an intrusion by a highly resourced state sponsored group. This support the immediate patch prioritization decision while simultaneously emphasizing the value of a holistically informed security organization.

Example 3: Intelligence Reduces Unnecessary Resource Expenditure — Automating Vulnerability Prioritization and Communications

Another common application for vulnerability intelligence is informing security teams and stakeholders when to stand down. When a vulnerability is reported in the media, organizations often spin up resources to patch as quickly as possible. Leveraging threat intelligence in security processes help an organization discern when it is necessary to respond in an all-hands-on-deck manner.

Take the case of the CVE-2019-12650, originally disclosed on Sept. 25, 2019 with an NVD rating of “High.” Without further information, an organization relying on this score to determine prioritization may include this vulnerability in the same patch cycle along with numerous other vulnerabilities rated High or Critical. As previously discussed, we have experts review the vulnerability and determine that it required the highest level of privileges available to successfully exploit, and there was no evidence of exploitation in the wild.

This is a case where threat intelligence reporting as well as automation can effectively minimize the need to unnecessarily spin up resources. Although the public NVD score rated this vulnerability high, Mandiant Intelligence rated it as “low” risk due to the high level of privileges needed to use it and lack of exploitation in the wild. Based on this assessment, organizations may decide that this vulnerability could be patched in the regular cycle and does not necessitate use of additional resources to patch out-of-band. When Mandiant ratings are automatically integrated into the patching ticket generation process, this can support efficient prioritization. Furthermore, an organization could use the analysis to issue an internal communication informing stakeholders of the reasoning behind lowering the prioritization.

Vulnerabilities: Managed

Because we have been closely monitoring vulnerability exploitation trends for years, we were able to distinguish when attacker use of zero-days evolved from use by a select class of highly skilled attackers, to becoming accessible to less skilled groups with enough money to burn. Our observations consistently underscore the speed with which attackers exploit useful vulnerabilities, and the lack of exploitation for vulnerabilities that are hard to use or do not help attackers fulfill their objectives. Our understanding of the threat landscape helps us to discern between hundreds of newly disclosed vulnerabilities to provide ratings and assessments that empower network defenders to focus on the most significant threats and effectively mitigate risk to their organizations.

Mandiant Threat Intelligence enables organizations to implement a defense-in-depth approach to holistically mitigate risk by taking all feasible steps—not just patching—to prevent, detect, and stymie attackers at every stage of the attack lifecycle with both technology and human solutions.

Register today to hear FireEye Mandiant Threat Intelligence experts discuss the latest in vulnerability threats, trends and recommendations in our upcoming April 30 webinar.

Additional Resources

Zero-Day Exploitation Increasingly Demonstrates Access to Money, Rather than Skill — Intelligence for Vulnerability Management, Part One

Think Fast: Time Between Disclosure, Patch Release and Vulnerability Exploitation — Intelligence for Vulnerability Management, Part Two

Separating the Signal from the Noise: How Mandiant Intelligence Rates Vulnerabilities — Intelligence for Vulnerability Management, Part Three

Mandiant offers Intelligence Capability Development (ICD) services to help organizations optimize their ability to consume, analyze and apply threat intelligence.

The FIVE tool is available on the FireEye Market. It requires a valid subscription for Mandiant Vulnerability Intelligence, and is driven from an API integration. Please contact your Intelligence Enablement Manager or FireEye Support to obtain API keys. 

Mandiant's OT Asset Vulnerability Assessment Service informs customers of relevant vulnerabilities by matching a customer's asset list against vulnerabilities and advisories. Relevant vulnerabilities and advisories are delivered in a report from as little as once a year, to as often as once a week. Additional add-on services such as asset inventory development and deep dive analysis of critical assets are available. Please contact your Intelligence Enablement Manager for more information.

Separating the Signal from the Noise: How Mandiant Intelligence Rates Vulnerabilities — Intelligence for Vulnerability Management, Part Three

One of the critical strategic and tactical roles that cyber threat intelligence (CTI) plays is in the tracking, analysis, and prioritization of software vulnerabilities that could potentially put an organization’s data, employees and customers at risk. In this four-part blog series, FireEye Mandiant Threat Intelligence highlights the value of CTI in enabling vulnerability management, and unveils new research into the latest threats, trends and recommendations.

Every information security practitioner knows that patching vulnerabilities is one of the first steps towards a healthy and well-maintained organization. But with thousands of vulnerabilities disclosed each year and media hype about the newest “branded” vulnerability on the news, it’s hard to know where to start.

The National Vulnerability Database (NVD) considers a range of factors that are fed into an automated process to arrive at a score for CVSSv3. Mandiant Threat Intelligence takes a different approach, drawing on the insight and experience of our analysts (Figure 1). This human input allows for qualitative factors to be taken into consideration, which gives additional focus to what matters to security operations.


Figure 1: How Mandiant Rates Vulnerabilities

Assisting Patch Prioritization

We believe our approach results in a score that is more useful for determining patching priorities, as it allows for the adjustment of ratings based on factors that are difficult to quantify using automated means. It also significantly reduces the number of vulnerabilities rated ‘high’ and ‘critical’ compared to CVSSv3 (Figure 2). We consider critical vulnerabilities to pose significant security risks and strongly suggest that remediation steps are taken to address them as soon as possible. We also believe that limiting ‘critical’ and ‘high’ designations helps security teams to effectively focus attention on the most dangerous vulnerabilities. For instance, from 2016-2019 Mandiant only rated two vulnerabilities as critical, while NVD assigned 3,651 vulnerabilities a ‘critical’ rating (Figure 3).


Figure 2: Criticality of US National Vulnerability Database (NVD) CVSSv3 ratings 2016-2019 compared to Mandiant vulnerability ratings for the same vulnerabilities


Figure 3: Numbers of ratings at various criticality tiers from NVD CVSSv3 scores compared to Mandiant ratings for the same vulnerabilities

Mandiant Vulnerability Ratings Defined

Our rating system includes both an exploitation rating and a risk rating:

The Exploitation Rating is an in indication of what is occurring in the wild.


Figure 4: Mandiant Exploitation Rating definitions

The Risk Rating is our expert assessment of what impact an attacker could have on a targeted organization, if they were to exploit a vulnerability.


Figure 5: Mandiant Risk Rating definitions

We intentionally use the critical rating sparingly, typically in cases where exploitation has serious impact, exploitation is trivial with often no real mitigating factors, and the attack surface is large and remotely accessible. When Mandiant uses the critical rating, it is an indication that remediation should be a top priority for an organization due to the potential impacts and ease of exploitation.

For example, Mandiant Threat Intelligence rated CVE-2019-19781 as critical due to the confluence of widespread exploitation—including by APT41—the public release of proof-of-concept (PoC) code that facilitated automated exploitation, the potentially acute outcomes of exploitation, and the ubiquity of the software in enterprise environments.

CVE-2019-19781 is a path traversal vulnerability of the Citrix Application Delivery Controller (ADC) 13.0 that when exploited, allows an attacker to remotely execute arbitrary code. Due to the nature of these systems, successful exploitation could lead to further compromises of a victim's network through lateral movement or the discovery of Active Directory (AD) and/or LDAP credentials. Though these credentials are often stored in hashes, they have been proven to be vulnerable to password cracking. Depending on the environment, the potential second order effects of exploitation of this vulnerability could be severe.

We described widespread exploitation of CVE-2019-19781 in our blog post earlier this year, including a timeline from disclosure on Dec. 17, 2019, to the patch releases, which began a little over a month later on Jan. 20, 2020. Significantly, within hours of the release of PoC code on Jan. 10, 2020, we detected reconnaissance for this vulnerability in FireEye telemetry data. Within days, we observed weaponized exploits used to gain footholds in victim environments. On the same day the first patches were released, Jan. 20, 2020, we observed APT41, one of the most prolific Chinese groups we track, kick off an expansive campaign exploiting CVE-2019-19781 and other vulnerabilities against numerous targets.

Factors Considered in Ratings

Our vulnerability analysts consider a wide variety of impact-intensifying and mitigating factors when rating a vulnerability. Factors such as actor interest, availability of exploit or PoC code, or exploitation in the wild can inform our analysis, but are not primary elements in rating.

Impact considerations help determine what impact exploitation of the vulnerability can have on a targeted system.

Impact Type

Impact Consideration

Exploitation Consequence

The result of successful exploitation, such as privilege escalation or remote code execution

Confidentiality Impact

The extent to which exploitation can compromise the confidentiality of data on the impacted system

Integrity Impact

The extent to which exploitation allows attackers to alter information in impacted systems

Availability Impact

The extent to which exploitation disrupts or restricts access to data or systems

Mitigating factors affect an attacker’s likelihood of successful exploitation.

Mitigating Factor

Mitigating Consideration

Exploitation Vector

What methods can be used to exploit the vulnerability?

Attacking Ease

How difficult is the exploit to use in practice?

Exploit Reliability

How consistently can the exploit execute and perform the intended malicious activity?

Access Vector

What type of access (i.e. local, adjacent network, or network) is required to successfully exploit the vulnerability?

Access Complexity

How difficult is it to gain access needed for the vulnerability?

Authentication Requirements

Does the exploitation require authentication and, if so, what type of authentication?

Vulnerable Product Ubiquity

How commonly is the vulnerable product used in enterprise environments?

Product's Targeting Value

How attractive is the vulnerable software product or device to threat actors to target?

Vulnerable Configurations

Does exploitation require specific configurations, either default or non-standard?

Mandiant Vulnerability Rating System Applied

The following are examples of cases in which Mandiant Threat Intelligence rated vulnerabilities differently than NVD by considering additional factors and incorporating information that either was not reported to NVD or is not easily quantified in an algorithm.

Vulnerability

Vulnerability Description

NVD Rating

Mandiant Rating

Explanation

CVE-2019-12650

A command injection vulnerability in the Web UI component of Cisco IOS XE versions 16.11.1 and earlier that, when exploited, allows a privileged attacker to remotely execute arbitrary commands with root privileges

High

Low

This vulnerability was rated high by NVD, but Mandiant Threat Intelligence rated it as low risk because it requires the highest level of privileges – level 15 admin privileges – to exploit. Because this level of access should be quite limited in enterprise environments, we believe that it is unlikely attackers would be able to leverage this vulnerability as easily as others. There is no known exploitation of this activity.

CVE-2019-5786

A use after free vulnerability within the FileReader component in Google Chrome 72.0.3626.119 and prior that, when exploited, allows an attacker to remotely execute arbitrary code. 

 

Medium

High

NVD rated CVE-2019-5786 as medium, while Mandiant Threat Intelligence rated it as high risk. The difference in ratings is likely due to NVD describing the consequences of exploitation as denial of service, while we know of exploitation in the wild which results in remote code execution in the context of the renderer, which is a more serious outcome.

As demonstrated, factors such as the assessed ease of exploitation and the observance of exploitation in the wild may result a different priority rating than the one issued by NVD. In the case of CVE-2019-12650, we ultimately rated this vulnerability lower than NVD due to the required privileges needed to execute the vulnerability as well as the lack of observed exploitation. On the other hand, we rated the CVE-2019-5786 as high risk due to the assessed severity, ubiquity of the software, and confirmed exploitation.

In early 2019, Google reported two zero-day vulnerabilities were being used together in the wild: CVE-2019-5786 (Chrome zero-day vulnerability) and CVE-2019-0808 (a Microsoft privilege escalation vulnerability). Google quickly released a patch for the Chrome vulnerability pushed it to users through Chrome’s auto-update feature on March 1. CVE-2019-5786 is significant because it can impact all major operating systems, Windows, Mac OS, and Linux, and requires only minimal user interaction, such as navigating or following a link to a website hosting exploit code, to achieve remote code execution. The severity is further compounded by a public blog post and proof of concept exploit code that was released a few weeks later and subsequently incorporated into a Metasploit module.

The Future of Vulnerability Analysis Requires Algorithms and Human Intelligence

We expect that the volume of vulnerabilities to continue to increase in coming years, emphasizing the need for a rating system that accurately identifies the most significant vulnerabilities and provides enough nuance to allow security teams to tackle patching in a focused manner. As the quantity of vulnerabilities grows, incorporating assessments of malicious actor use, that is, observed exploitation as well as the feasibility and relative ease of using a particular vulnerability, will become an even more important factor in making meaningful prioritization decisions.

Mandiant Threat Intelligence believes that the future of vulnerability analysis will involve a combination of machine (structured or algorithmic) and human analysis to assess the potential impact of a vulnerability and the true threat that it poses to organizations. Use of structured algorithmic techniques, which are common in many models, allows for consistent and transparent rating levels, while the addition of human analysis allows experts to integrate factors that are difficult to quantify, and adjust ratings based on real-world experience regarding the actual risk posed by various types of vulnerabilities.

Human curation and enhancement layered on top of automated rating will provide the best of both worlds: speed and accuracy. We strongly believe that paring down alerts and patch information to a manageable number, as well as clearly communicating risk levels with Mandiant vulnerability ratings makes our system a powerful tool to equip network defenders to quickly and confidently take action against the highest priority issues first.

Register today to hear FireEye Mandiant Threat Intelligence experts discuss the latest in vulnerability threats, trends and recommendations in our upcoming April 30 webinar.

Think Fast: Time Between Disclosure, Patch Release and Vulnerability Exploitation — Intelligence for Vulnerability Management, Part Two

One of the critical strategic and tactical roles that cyber threat intelligence (CTI) plays is in the tracking, analysis, and prioritization of software vulnerabilities that could potentially put an organization’s data, employees and customers at risk. In this four-part blog series, FireEye Mandiant Threat Intelligence highlights the value of CTI in enabling vulnerability management, and unveils new research into the latest threats, trends and recommendations. Check out our first post on zero-day vulnerabilities.

Attackers are in a constant race to exploit newly discovered vulnerabilities before defenders have a chance to respond. FireEye Mandiant Threat Intelligence research into vulnerabilities exploited in 2018 and 2019 suggests that the majority of exploitation in the wild occurs before patch issuance or within a few days of a patch becoming available.


Figure 1: Percentage of vulnerabilities exploited at various times in relation to patch release

FireEye Mandiant Threat Intelligence analyzed 60 vulnerabilities that were either exploited or assigned a CVE number between Q1 2018 to Q3 2019. The majority of vulnerabilities were exploited as zero-days – before a patch was available. More than a quarter were exploited within one month after the patch date. Figure 2 illustrates the number of days between when a patch was made available and the first observed exploitation date for each vulnerability.

We believe these numbers to be conservative estimates, as we relied on the first reported exploitation of a vulnerability linked to a specific date. Frequently, first exploitation dates are not publicly disclosed. It is also likely that in some cases exploitation occurred without being discovered before researchers recorded exploitation attached to a certain date.


Figure 2: Time between vulnerability exploitation and patch issuance

­­­Time Between Disclosure and Patch Release

The average time between disclosure and patch availability was approximately 9 days. This average is slightly inflated by vulnerabilities such as CVE-2019-0863, a Microsoft Windows server vulnerability, which was disclosed in December 2018 and not patched until 5 months later in May 2019. The majority of these vulnerabilities, however, were patched quickly after disclosure. In 59% of cases, a patch was released on the same day the vulnerability was disclosed. These metrics, in combination with the observed swiftness of adversary exploitation activity, highlight the importance of responsible disclosure, as it may provide defenders with the slim window needed to successfully patch vulnerable systems.

Exploitation After Patch Release

While the majority of the observed vulnerabilities were zero-days, 42 percent of vulnerabilities were exploited after a patch had been released. For these non-zero-day vulnerabilities, there was a very small window (often only hours or a few days) between when the patch was released and the first observed instance of attacker exploitation. Table 1 provides some insight into the race between attackers attempting to exploit vulnerable software and organizations attempting to deploy the patch.

Time to Exploit for Vulnerabilities First Exploited after a Patch

Hours

Two vulnerabilities were successfully exploited within hours of a patch release, CVE-2018-2628 and CVE-2018-7602.

Days

12 percent of vulnerabilities were exploited within the first week following the patch release.

One Month

15 percent of vulnerabilities were exploited after one week but within one month of patch release.

Years

In multiple cases, such as the first observed exploitation of CVE-2010-1871 and CVE-2012-0874 in 2019, attackers exploited vulnerabilities for which a patch had been made available many years prior.

Table 1: Exploitation timing for patched vulnerabilities ranges from within hours of patch issuance to years after initial disclosure

Case Studies

We continue to observe espionage and financially motivated groups quickly leveraging publicly disclosed vulnerabilities in their operations. The following examples demonstrate the speed with which sophisticated groups are able to incorporate vulnerabilities into their toolsets following public disclosure and the fact that multiple disparate groups have repeatedly leveraged the same vulnerabilities in independent campaigns. Successful operations by these types of groups are likely to have a high potential impact.


Figure 3: Timeline of activity for CVE-2018-15982

CVE-2018-15982: A use after free vulnerability in a file package in Adobe Flash Player 31.0.0.153 and earlier that, when exploited, allows an attacker to remotely execute arbitrary code. This vulnerability was exploited by espionage groups—Russia's APT28 and North Korea's APT37—as well as TEMP.MetaStrike and other financially motivated attackers.


Figure 4: Timeline of activity for CVE-2018-20250

CVE-2018-20250: A path traversal vulnerability exists within the ACE format in the archiver tool WinRAR versions 5.61 and earlier that, when exploited, allows an attacker to locally execute arbitrary code. This vulnerability was exploited by multiple espionage groups, including Chinese, North Korean, and Russian, groups, as well as Iranian groups APT33 and TEMP.Zagros.


Figure 5: Timeline of Activity for CVE-2018-4878

CVE-2018-4878: A use after free vulnerability exists within the DRMManager’s “initialize” call in Adobe Flash Player 28.0.0.137 and earlier that, when exploited, allows an attacker to remotely execute arbitrary code. Mandiant Intelligence confirmed that North Korea’s APT37 exploited this vulnerability as a zero-day as early as September 3, 2017. Within 8 days of disclosure, we observed Russia’s APT28 also leverage this vulnerability, with financially motivated attackers and North Korea’s TEMP.Hermit also using within approximately a month of disclosure.

Availability of PoC or Exploit Code

The availability of POC or exploit code on its own does not always increase the probability or speed of exploitation. However, we believe that POC code likely hastens exploitation attempts for vulnerabilities that do not require user interaction. For vulnerabilities that have already been exploited, the subsequent introduction of publicly available exploit or POC code indicates malicious actor interest and makes exploitation accessible to a wider range of attackers. There were a number of cases in which certain vulnerabilities were exploited on a large scale within 48 hours of PoC or exploit code availability (Table 2).

Time Between PoC or Exploit Code Publication and First Observed Potential Exploitation Events

Product

CVE

FireEye Risk Rating

1 day

WinRAR

CVE-2018-20250

Medium

1 day

Drupal

CVE-2018-7600

High

1 day

Cisco Adaptive Security Appliance

CVE-2018-0296

Medium

2 days

Apache Struts

CVE-2018-11776

High

2 days

Cisco Adaptive Security Appliance

CVE-2018-0101

High

2 days

Oracle WebLogic Server

CVE-2018-2893

High

2 days

Microsoft Windows Server

CVE-2018-8440

Medium

2 days

Drupal

CVE-2019-6340

Medium

2 days

Atlassian Confluence

CVE-2019-3396

High

Table 2: Vulnerabilities exploited within two days of either PoC or exploit code being made publicly available, Q1 2018–Q3 2019

Trends by Targeted Products

FireEye judges that malicious actors are likely to most frequently leverage vulnerabilities based on a variety of factors that influence the utility of different vulnerabilities to their specific operations. For instance, we believe that attackers are most likely to target the most widely used products (see Figure 6). Attackers almost certainly also consider the cost and availability of an exploit for a specific vulnerability, the perceived success rate based on the delivery method, security measures introduced by vendors, and user awareness around certain products.

The majority of observed vulnerabilities were for Microsoft products, likely due to the ubiquity of Microsoft offerings. In particular, vulnerabilities in software such as Microsoft Office Suite may be appealing to malicious actors based on the utility of email attached documents as initial infection vectors in phishing campaigns.


Figure 6: Exploited vulnerabilities by vendor, Q1 2018–Q3 2019

Outlook and Implications

The speed with which attackers exploit patched vulnerabilities emphasizes the importance of patching as quickly as possible. With the sheer quantity of vulnerabilities disclosed each year, however, it can be difficult for organizations with limited resources and business constraints to implement an effective strategy for prioritizing the most dangerous vulnerabilities. In upcoming blog posts, FireEye Mandiant Threat Intelligence describes our approach to vulnerability risk rating as well as strategies for making informed and realistic patch management decisions in more detail.

We recommend using this exploitation trend information to better prioritize patching schedules in combination with other factors, such as known active threats to an organization's industry and geopolitical context, the availability of exploit and PoC code, commonly impacted vendors, and how widely software is deployed in an organization's environment may help to mitigate the risk of a large portion of malicious activity.

Register today to hear FireEye Mandiant Threat Intelligence experts discuss the latest in vulnerability threats, trends and recommendations in our upcoming April 30 webinar.

Zero-Day Exploitation Increasingly Demonstrates Access to Money, Rather than Skill — Intelligence for Vulnerability Management, Part One

One of the critical strategic and tactical roles that cyber threat intelligence (CTI) plays is in the tracking, analysis, and prioritization of software vulnerabilities that could potentially put an organization’s data, employees and customers at risk. In this four-part blog series, FireEye Mandiant Threat Intelligence highlights the value of CTI in enabling vulnerability management, and unveils new research into the latest threats, trends and recommendations.

FireEye Mandiant Threat Intelligence documented more zero-days exploited in 2019 than any of the previous three years. While not every instance of zero-day exploitation can be attributed to a tracked group, we noted that a wider range of tracked actors appear to have gained access to these capabilities. Furthermore, we noted a significant increase over time in the number of zero-days leveraged by groups suspected to be customers of companies that supply offensive cyber capabilities, as well as an increase in zero-days used against targets in the Middle East, and/or by groups with suspected ties to this region. Going forward, we are likely to see a greater variety of actors using zero-days, especially as private vendors continue feeding the demand for offensive cyber weapons.

Zero-Day Usage by Country and Group

Since late 2017, FireEye Mandiant Threat Intelligence noted a significant increase in the number of zero-days leveraged by groups that are known or suspected to be customers of private companies that supply offensive cyber tools and services. Additionally, we observed an increase in zero-days leveraged against targets in the Middle East, and/or by groups with suspected ties to this region.

Examples include:

  • A group described by researchers as Stealth Falcon and FruityArmor is an espionage group that has reportedly targeted journalists and activists in the Middle East. In 2016, this group used malware sold by NSO group, which leveraged three iOS zero-days. From 2016 to 2019, this group used more zero-days than any other group.
  • The activity dubbed SandCat in open sources, suspected to be linked to Uzbekistan state intelligence, has been observed using zero-days in operations against targets in the Middle East. This group may have acquired their zero-days by purchasing malware from private companies such as NSO group, as the zero-days used in SandCat operations were also used in Stealth Falcon operations, and it is unlikely that these distinct activity sets independently discovered the same three zero-days.
  • Throughout 2016 and 2017, activity referred to in open sources as BlackOasis, which also primarily targets entities in the Middle East and likely acquired at least one zero-day in the past from private company Gamma Group, demonstrated similarly frequent access to zero-day vulnerabilities.

We also noted examples of zero-day exploitation that have not been attributed to tracked groups but that appear to have been leveraged in tools provided by private offensive security companies, for instance:

  • In 2019, a zero-day exploit in WhatsApp (CVE-2019-3568) was reportedly used to distribute spyware developed by NSO group, an Israeli software company.
  • FireEye analyzed activity targeting a Russian healthcare organization that leveraged a 2018 Adobe Flash zero-day (CVE-2018-15982) that may be linked to leaked source code of Hacking Team.
  • Android zero-day vulnerability CVE-2019-2215 was reportedly being exploited in the wild in October 2019 by NSO Group tools.

Zero-Day Exploitation by Major Cyber Powers

We have continued to see exploitation of zero days by espionage groups of major cyber powers.

  • According to researchers, the Chinese espionage group APT3 exploited CVE-2019-0703 in targeted attacks in 2016.
  • FireEye observed North Korean group APT37 conduct a 2017 campaign that leveraged Adobe Flash vulnerability CVE-2018-4878. This group has also demonstrated an increased capacity to quickly exploit vulnerabilities shortly after they have been disclosed.
  • From December 2017 to January 2018, we observed multiple Chinese groups leveraging CVE-2018-0802 in a campaign targeting multiple industries throughout Europe, Russia, Southeast Asia, and Taiwan. At least three out of six samples were used before the patch for this vulnerability was issued.
  • In 2017, Russian groups APT28 and Turla leveraged multiple zero-days in Microsoft Office products. 

In addition, we believe that some of the most dangerous state sponsored intrusion sets are increasingly demonstrating the ability to quickly exploit vulnerabilities that have been made public. In multiple cases, groups linked to these countries have been able to weaponize vulnerabilities and incorporate them into their operations, aiming to take advantage of the window between disclosure and patch application. 

Zero-Day Use by Financially Motivated Actors

Financially motivated groups have and continue to leverage zero-days in their operations, though with less frequency than espionage groups.

In May 2019, we reported that FIN6 used a Windows server 2019 use-after-free zero-day (CVE-2019-0859) in a targeted intrusion in February 2019. Some evidence suggests that the group may have used the exploit since August 2018. While open sources have suggested that the group potentially acquired the zero-day from criminal underground actor "BuggiCorp," we have not identified direct evidence linking this actor to this exploit's development or sale.

Conclusion

We surmise that access to zero-day capabilities is becoming increasingly commodified based on the proportion of zero-days exploited in the wild by suspected customers of private companies. Possible reasons for this include:

  • Private companies are likely creating and supplying a larger proportion of zero-days than they have in the past, resulting in a concentration of zero-day capabilities among highly resourced groups.
  • Private companies may be increasingly providing offensive capabilities to groups with lower overall capability and/or groups with less concern for operational security, which makes it more likely that usage of zero-days will be observed.

It is likely that state groups will continue to support internal exploit discovery and development; however, the availability of zero-days through private companies may offer a more attractive option than relying on domestic solutions or underground markets. As a result, we expect that the number of adversaries demonstrating access to these kinds of vulnerabilities will almost certainly increase and will do so at a faster rate than the growth of their overall offensive cyber capabilities—provided they have the ability and will to spend the necessary funds.

Register today to hear FireEye Mandiant Threat Intelligence experts discuss the latest in vulnerability threats, trends and recommendations in our upcoming April 30 webinar. 

Sourcing Note: Some vulnerabilities and zero-days were identified based on FireEye research, Mandiant breach investigation findings, and other technical collections. This paper also references vulnerabilities and zero-days discussed in open sources including  Google Project Zero's zero-day "In the Wild" Spreadsheet . While we believe these sources are reliable as used in this paper, we do not vouch for the complete findings of those sources. Due to the ongoing discovery of past incidents, we expect that this research will remain dynamic.

Monitoring ICS Cyber Operation Tools and Software Exploit Modules To Anticipate Future Threats

There has only been a small number of broadly documented cyber attacks targeting operational technologies (OT) / industrial control systems (ICS) over the last decade. While fewer attacks is clearly a good thing, the lack of an adequate sample size to determine risk thresholds can make it difficult for defenders to understand the threat environment, prioritize security efforts, and justify resource allocation.

To address this problem, FireEye Mandiant Threat Intelligence produces a range of reports for subscription customers that focus on different indicators to predict future threats. Insights from activity on dark web forums, anecdotes from the field, ICS vulnerability research, and proof of concept research makes it possible to illustrate the threat landscape even with limited incident data. This blog post focuses on one of those source sets—ICS-oriented intrusion and attack tools, which will be referred to together in this post as cyber operation tools.

ICS-oriented cyber operation tools refer to hardware and software that has the capability to either exploit weaknesses in ICS, or interact with the equipment in such a way that could be utilized by threat actors to support intrusions or attacks. For this blog post, we separated exploit modules that are developed to run on top of frameworks such as Metasploit, Core Impact, or Immunity Canvas from other cyber operation tools due to their exceedingly high number.

Cyber Operation Tools Reduce the Level of Specialized Knowledge Attackers Need to Target ICS

As ICS are a distinct sub-domain to information and computer technology, successful intrusions and attacks against these systems often requires specialized knowledge, establishing a higher threshold for successful attacks. Since intrusion and attack tools are often developed by someone who already has the expertise, these tools can help threat actors bypass the need for gaining some of this expertise themselves, or it can help them gain the requisite knowledge more quickly. Alternatively, experienced actors may resort to using known tools and exploits to conceal their identity or maximize their budget.


Figure 1: ICS attacker knowledge curve

The development and subsequent adoption of standardized cyber operation tools is a general indication of increasing adversarial capability. Whether these tools were developed by researchers as proof-of-concept or utilized during past incidents, access to them lowers the barrier for a variety of actors to learn and develop future skills or custom attack frameworks. Following this premise, equipment that is vulnerable to exploits using known cyber operation tools becomes low-hanging fruit for all sorts of attackers.

ICS Cyber Operation Tool Classification

Mandiant Intelligence tracks a large number of publicly available ICS-specific cyber operation tools. The term "ICS-specific," as we employ it, does not have a hard-edged definition. While the vast majority of cyber operation tools we track are clear-cut cases, we have, in some instances, considered the intent of the tool's creator(s) and the tool's reasonably foreseeable impact on ICS software and equipment. Note, we excluded tools that are IT-based but may affect OT systems, such as commodity malware or known network utilities.  We included only a few exceptions, where we identified specialized adaptations or features that enabled the tool to interact with ICS, such as the case of nmap scripts.

We assigned each tool to at least one of eight different categories or classes, based on functionality.


Table 1: Classes of ICS-specific intrusion and attack tools

While some of the tools included in our list were created as early as 2004, most of the development has taken place during the last 10 years. The majority of the tools are also vendor agnostic, or developed to target products from some of the largest ICS original equipment manufacturers (OEM). Siemens stands out in this area, with 60 percent of the vendor-specific tools potentially targeting its products. Other tools we identified were developed to target products from Schneider Electric, GE, ABB, Digi International, Rockwell Automation, and Wind River Systems.

Figure 2 depicts the number of tools by class. Of note, network discovery tools make up more than a quarter of the tools. We also highlight that in some cases, the software exploitation tools we track host extended repositories of modules to target specific products or vulnerabilities.


Figure 2: ICS-specific intrusion and attack tools by class

Software Exploit Modules

Software exploit modules are the most numerous subcomponents of cyber operation tools given their overall simplicity and accessibility. Most frequently, exploit modules are developed to take advantage of a specific vulnerability and automate the exploitation process. The module is then added to an exploit framework. The framework works as a repository that may contain hundreds of modules for targeting a wide variety of vulnerabilities, networks, and devices. The most popular frameworks include Metasploit, Core Impact, and Immunity Canvas. Also, since 2017, we have identified the development of younger ICS-specific exploit frameworks such as AutosploitIndustrial Exploitation Framework (ICSSPLOIT), and the Industrial Security Exploitation Framework.

Given the simplicity and accessibility of exploit modules, they are attractive to actors with a variety of skill levels. Even less sophisticated actors may take advantage of an exploit module without completely understanding how a vulnerability works or knowing each of the commands required to exploit it. We note that, although most of the exploit modules we track were likely developed for research and penetration testing, they could also be utilized throughout the attack lifecycle.

Exploit Modules Statistics

Since 2010, Mandiant Intelligence has tracked exploit modules for the three major exploitation frameworks: Metasploit, Core Impact, and Immunity Canvas. We currently track hundreds of ICS-specific exploit modules related to more than 500 total vulnerabilities, 71 percent of them being potential zero-days. The break down is depicted in Figure 3. Immunity Canvas currently has the most exploits due in large part to the efforts of Russian security research firm GLEG.


Figure 3: ICS exploit modules by framework

Metasploit framework exploit modules deserve particular attention. Even though it has the fewest number of modules, Metasploit is freely available and broadly used for IT penetration testing, while Core Impact and Immunity Canvas are both commercial tools. This makes Metasploit the most accessible of the three frameworks. However, it means that module development and maintenance are provided by the community, which is likely contributing to the lower number of modules.

It is also worthwhile to examine the number of exploit modules by ICS product vendor. The results of this analysis are depicted in Figure 4, which displays vendors with the highest number of exploit modules (over 10).


Figure 4: Vendors with 10 exploit modules or more

Figure 4 does not necessarily indicate which vendors are the most targeted, but which products have received the most attention from exploit writers. Several factors could contribute to this, including the availability of software to experiment with, general ease of writing an exploit on particular vulnerabilities, or how the vulnerability matches against the expertise of the exploit writers.

Some of the vendors included in the graph have been acquired by other companies, however we tracked them separately as the vulnerability was identified prior to the acquisition. One example of this is Schneider Electric, which acquired 7-Technologies in 2011 and altered the names of their product portfolio. We also highlight that the graph solely counts exploit modules, regardless of the vulnerability exploited. Modules from separate frameworks could target the same vulnerability and would each be counted separately.

ICS Cyber Operation Tools and Software Exploitation Frameworks Bridge Knowledge and Expertise Gaps

ICS-specific cyber operation tools often released by researchers and security practitioners are useful assets to help organizations learn about ongoing threats and product vulnerabilities. However, as anything publicly available, they can also lower the bar for threat actors that hold an interest in targeting OT networks. Although successful attacks against OT environments will normally require a high level of skills and expertise from threat actors, the tools and exploit modules discussed in this post are making it easier to bridge the knowledge gap.

Awareness about the proliferation of ICS cyber operation tools should serve as an important risk indicator of the evolving threat landscape. These tools provide defenders with an opportunity to perform risk assessments in test environments and to leverage aggregated data to communicate and obtain support from company executives. Organizations that do not pay attention to available ICS cyber operation tools risk becoming low-hanging fruit for both sophisticated and unexperienced threat actors exploring new capabilities.

FireEye Intelligence customers have access to the full list and analysis of ICS cyber operation tools and exploit modules. Visit our website to learn more about the FireEye Mandiant Cyber Physical Threat Intelligence subscription.

Leveraging the Power of Solutions and Intelligence

Welcome to my first post as a FireEye™ employee! Many of you have asked me what I think of FireEye's acquisition of Mandiant. One of the aspects of the new company that I find most exciting is our increased threat intelligence capabilities. This post will briefly explore what that means for our customers, prospects, and the public.

By itself, Mandiant generates threat intelligence in a fairly unique manner from three primary sources. First, our professional services division learns about adversary tools, tactics, and procedures (TTPs) by assisting intrusion victims. This "boots on the ground" offering is unlike any other, in terms of efficiency (a small number of personnel required), speed (days or weeks onsite, instead of weeks or months), and effectiveness (we know how to remove advanced foes). By having consultants inside a dozen or more leading organizations every week of the year, Mandiant gains front-line experience of cutting-edge intrusion activity. Second, the Managed Defense™ division operates our software and provides complementary services on a multi-year subscription basis. This team develops long-term counter-intrusion experience by constantly assisting another set of customers in a managed security services model. Finally, Mandiant's intelligence team acquires data from a variety of sources, fusing it with information from professional services and managed defense. The output of all this work includes deliverables such as the annual M-Trends report and last year's APT1 document, both of which are free to the public. Mandiant customers have access to more intelligence through our software and services.

As a security software company, FireEye deploys powerful appliances into customer environments to inspect and (if so desired) quarantine malicious content. Most customers choose to benefit from the cloud features of the FireEye product suite. This decision enables community self-defense and exposes a rich collection of the world's worst malware. As millions more instances of FireEye's MVX technology expand to mobile, cloud and data center environments, all of us benefit in terms of protection and visibility. Furthermore, FireEye's own threat intelligence and services components generate knowledge based on their visibility into adversary software and activity. Recent examples include breaking news on Android malware, identifying Yahoo! systems serving malware, and exploring "cyber arms" dealers. Like Mandiant, FireEye's customers benefit from intelligence embedded into the MVX platforms.

Many have looked at the Mandiant and FireEye combination from the perspective of software and services. While these are important, both ultimately depend on access to the best threat intelligence available. As a combined entity, FireEye can draw upon nearly 2,000 employees in 40 countries, with a staff of security consultants, analysts, engineers, and experts not found in any other private organization. Stay tuned to the FireEye and Mandiant blogs as we work to provide an integrated view of adversary activity throughout 2014.

I hope you can attend the FireEye + Mandiant - 4 Key Steps to Continuous Threat Protection webinar on Wednesday, Jan 29 at 2pm ET. During the webinar Manish Gupta, FireEye SVP of Products, and Dave Merkel, Mandiant CTO and VP of Products will discuss why traditional IT security defenses are no longer the safeguards they once were and what's now needed to protect against today's advanced threats.

Q&A Follow-up – Tools of Engagement: The Mechanics of Threat Intelligence

As a follow-up to our recently held Tools of Engagement - The Mechanics of Threat Intelligence: Analysis, Information Sharing and Associated Challenges webinar, questions answered by presenters Doug Wilson and Jen Weedon are listed below. To view the archived webinar, please click here.

1. We received some questions asking about work being done by Mandiant and others on open source intelligence sharing. We've got some questions about STIX and TAXII in comparison to other frameworks.

To succeed with sharing indicators internally or externally, you have to pick a standardized format. That can be anything, honestly, from a tab-delimited file to complicated XML. If you are looking at sharing outside your organization, there are a couple of different standards that are out there to look at.

OpenIOC is what Mandiant uses for recording and transmitting threat indicators. DHS funds a project through MITRE called STIX, with a transport and exchange mechanism that is called TAXII. IETF also has the MILE working group, which has a protocol named IODEF, which uses RID as its transfer and exchange mechanism. These are all ways of packaging up threat information and shipping them off to other people or organizations. We've been looking at interacting with both groups, and trying to make sure that OpenIOC interacts with both sets of protocols where it can.

A lot of people are still very uncomfortable with the idea of sharing openly, so a lot of the sharing that's happening out there is going to be happening in smaller, closed groups.

The protocols that we have discussed are all open standards, whether somebody is sharing in a small group or somebody is sharing in a large group. Since they are all open and feely available, there's not any restrictions to using them for sharing, and ultimately, we're hoping that there are some corporations out there that are standing up sharing portals - there are also government entities that are doing this as well. We're hoping that ultimately, people will be able to pick the tools that work properly for their particular situation. But whatever standard (or standards) shakes out as being the one most people use, it will need to be something that's open and accessible.

There were several questions about sharing groups. If you're not familiar with the idea of an ISAC, I looking them up online. ISAC stands for Information Sharing and Analysis Center. There's an ISAC Council website that lists a bunch of the ISACs (not endorsed by Mandiant, but for reference: http://www.isaccouncil.org/memberisacs.html). Some of the larger ISACs have their own events and conferences, FS-ISAC is one that is engaged in adopting threat information sharing standards (such as STIX).

There are also specific groups for the Defense Industrial Base, or DIB. Associated with the DoD Cybercrime Center (DC3) is the DoD-DIB Collaborative Information Sharing Environment (DCISE).

2. As an investment bank, how should we advise our clients concerning cyber security audit and compliance prior to making an acquisition?

We have seen threat activity around or related to acquisitions and mergers. Entities should be aware that advanced attackers are often quite aware of business decisions and movements in industries that they're targeting, so you should take this into account when determining how you want to allocate resources for risk management.

We can't directly advise any specific course of action, and folks should consult their counsel or their risk management personnel on specific actions, but on numerous occasions we have been asked to do investigations that center around acquisitions and mergers. We often advise our clients to consider doing threat assessments as part of the due diligence process when they are thinking of acquiring other companies. In addition, we conduct regular analysis on risk factors for companies who may be targeted by advanced threat actors to identify which variables may place them at higher likelihood of being targeted, and why. These variables may include the industry they're in, their intellectual property, strategic partnerships, business strategy, and overseas operations.

3. What are the options - in other words, legal or technical - available to counterattack hackers from world nations who don't respect international laws?

Mandiant does not endorse or support hacking back in any form. We suggest an in-depth incident response life cycle within your organization's network and host, and an ongoing cycle of detection, response and containment. We also suggest reaching out to law enforcement or appropriate authorities responsible for national security

4. What are the most important items to gather and share with a threat team for vulnerability analyses?

An accurate depiction of vulnerabilities in an enterprise can help inform risk management decisions. This should be a two-way communication. A team that deals with threats can prioritize responding to some threats above others if they know certain vulnerabilities or weaknesses exist within their environment, and then the threat team can talk with whoever does the vulnerability assessment if they think certain types of actors are more likely to exploit certain types of vulnerabilities, so those vulnerabilities have a higher priority for getting fixed.

5. What kind of training do you suggest for intelligence analysis, especially cyber threat intelligence analysis?

One of the most important things a company can do, or anyone that does threat intel in an office can do is to get the technical folks and the sort of more traditional intel analysts in the room together to observe sort of how the other side works.

It may not be possible to fully cross-train both types of personnel on each other's disciplines, but the more interaction they have and the more folks get out of their comfort zones with what they're used to doing, the better your teams will understand with each other. Communication is key, especially when dealing with technical and non-technical teams having to work together.

6. Strategic versus tactical - why would individual firms care beyond what protects them from immediate threats? In other words, why would they care about strategic over the tactical?

This gets into debates about attribution, categorization of threats and threat tracking, and what that matters, which is a large topic in and of itself. It really depends on where an organization is in terms of the maturity of its security capabilities.

If an organization's security interests are strictly operational and are just looking at turning stuff away from the firewall and blocking things, the idea of this longer-term view of threat actors is not going to be interesting, because they are just looking at what can immediately stop the bleeding. As an organization becomes more mature in their security posture and starts to evolve it into basing security off of threat intelligence, they will be able to appreciate the use of strategic intelligence. But this requires an investment of a lot more resources, and investment in personnel and programs that are not normally considered standard for traditional "information security" yet.

7. Is threat intelligence a myth?

Again, this depends a lot on the maturity level that a security program is at. It's not a myth, but it might be useless to entities that do not have the resources or focus to do anything with threat intelligence.

We've seen that attribution is one area where people can go down a lot of rabbit holes. Some folks spend a lot of time arguing about the merit of attribution, and can get wrapped around the fact that attribution down to a specific human being is nearly impossible on the Internet. It doesn't necessarily matter who is at the keyboard unless you're a nation state or you're somebody who's going to be somehow doing an international lawsuit against a particular person.

But the groups of actors, and what is motivating these groups to make them want to act against your enterprise, should be of interest to you. If you want to be proactive about securing your network and distributing resources to protect your network, it helps to know that someone is using a particular type of attack and they're not using another set of attacks. This may help you determine how to allocate resources for defense.

If you have less resources, if you have a less mature security posture, if you're not as involved in terms of where you are in the life cycle of getting a sophisticated security program set up - and a lot of people are having a hard time getting down that road because you have the classic problems of justifying your budget, or convincing your CEO that they care - you're not necessarily going to care about a strategic view of threat actors.

But if you're someone who's invested more in security, you have a larger investment in spending money on this and doing some sort of defense that is informed by a strategic viewpoint, it's going to matter a lot more, and we're seeing a lot more major companies turning in this direction, over time. So there could be naysayers, but the market is slowly speaking out against them.

8. What are some resources for analysts and detailed methodologies and curriculums as well as buying threat intelligence and reviews on different products and services?

Without going into specifics on the latter question, there are certainly a lot of industry research organizations that have racked and stacked different threat intelligence providers and their solutions.

I guess it really gets to what you can consume. Like Doug was saying, if you have the resources and the political will inside your organization to consume more strategic intelligence, you may have different needs and pursue different solutions providers.

In terms of developing a threat intel capability, there are certainly lots of firms out there, including Mandiant, who consult on what you need to do to mature in that sense.

9. Is there public or closed IOC sharing platforms besides ioc.forensicartifacts.com?

A couple of other entities out there are using OpenIOC publicly. If you are familiar with the company AlienVault, their lab, when they do posts of threat information and blog posts about malware, will include an IOC as part of their sharing.

We also do that with some of our blog posts and forum posts. Some of those are open and some of those closed to our customers, depending on the level of content. There, unfortunately, is not a wonderful public open sharing site for all of the IOCs out there other than http://ioc.forensicartifacts.com.

Most people are still kind of uncomfortable with the idea of sharing openly, so you're going to see closed communities springing up here and there and, over time, they're going to open up or improve or share with larger audiences. We hope to continue to contribute to that conversation as it evolves.

10. What are the sources of IOCs

IOCs can come from a variety of sources. In Mandiant's case, they are a product of a wide variety of different sets of input throughout our business units, curated over time by our intel team. We capture IOCs from our investigative work, from feedback from our product and managed services customers, and from a wide variety of intel sources, including examining malware and network traffic. Organizations could create IOCs from their own knowledge of threats that they face, but usually they use a combination of their knowledge plus information gleaned from other security or intelligence sources.

11. What kind of IOC would you recommend sharing publicly or just in closed groups, so attackers don't know detection methods?

IOCs don't necessarily give away detection methods. Specific pieces of intelligence may give away sources and methods, and you need to determine risk to your intel sources before sharing anything. However, in most cases, especially if you are already trying to combat an opponent that has launched attacks against your networks, they probably assume that you can capture anything that they may deploy against you. If you are using external sources of intelligence, the situation becomes more complex, which is where having trained intelligence staff and experienced analysts can help you make appropriate decisions. The risk tolerance of each organization is going to be different, so it will likely be something that you will have to tailor to your organization's limits.

12. What are some products that can be used for capturing/managing intelligence?

We have previously discussed the use of threat intel in the form of IOCs. The freely available Mandiant IOC Editor can be used to write and edit IOCs, and Redline can consume IOCs for host based investigations. Both of these complement the commercial Mandiant for Intelligent Response® offering.

Mandiant IOC Editor

Redline

Additionally, during the webinar we were also asked about tools for gathering and cataloging more strategic intelligence. None of these are endorsed by Mandiant. However, some examples of tools to consider are:

Splunk http://www.splunk.com/

Palantir http://www.palantir.com/what-we-do/

Lynxeon http://www.21ct.com/products/lynxeon/

13. Do domains and IPs alone attribute activity to an actor if the actor was seeing using a domain or an IP once?

Attribution to actors is a complicated and time-consuming process. Actors' use of certain domains or IPs as part of their attack infrastructure is only part of the story. Threat groups also frequently share infrastructure, malware, or other tools. There's certainly no 1:1 correspondence between IPs and domains and specific actors, especially if you've only observed the correlation once. They're useful data points for more thorough analysis.