Category Archives: 5G

In an increasingly 5G and edge world, DNS matters

Infoblox identified the challenges Communication Service Providers (CSPs) face in transitioning to distributed cloud models, as well as the use cases for multi-access edge computing (MEC), 5G New Radio (NR), and 5G Next Generation Core (NGC) networks. “Distributed cloud models such as 5G and multi-access edge computing networks have the potential to drastically change the CSP industry, delivering high-bandwidth, low latency services to network customers,” said Dilip Pillaipakam, Vice President and GM of Service Provider … More

The post In an increasingly 5G and edge world, DNS matters appeared first on Help Net Security.

Huawei Analyst Summit 2020: China’s telemedicine hinges on its 5G development

As 5G deployment plods along in Canada, the next-generation wireless standard has already been adopted by healthcare practitioners in China. At the Huawei Global Analyst Summit 2020, Dr. Lu QingJun, director at China-Japan Friendship Hospital and a full-time remote healthcare practitioner, shared his thoughts on the impact of the higher quality networks on hospitals of the future.

Related:

Lu gave a personal example by describing one of his previous remote cases at a primary care hospital. In his scenario, the patient had to wait for 25 hours to receive a consultation, due in large part to the 12GB of data that had to be sent over the network. Lu said that with 5G, that time can be cut to just “dozens of minutes”. The dataset is amplified for patients who need multiple tests, such as CT scans and electrocardiograms.

Future health care’s success will be intertwined with network quality.

When describing telemedicine, Lu precited that data, technology, and intelligence will become inseparable from healthcare. Although the course has been set, Lu also noted the perpetual battle to improve privacy and secure data transmission, all of which require new infrastructure for the intelligent hospital.

“We’ve always said that it’s not necessary to replace 4G with 5G in all cases, so we need to identify those cases where only 5G is able to support,” said Lu, noting that the introduction of technology built on 5G should not impede the efficiency of existing workflows.

The conversation then naturally leads to whether existing technologies like fibre internet could fill these roles.

“Hospitals already have fibre access, so do we actually need 5G?” Lu asked rhetorically. “You only say that because you don’t understand 5g…we need mobility, but not only that, we need to upgrade our equipment and currently our equipment is wired.”

 

During the presentation, Lu credited telemedicine in China’s battle against the COIVD-19 pandemic.

Network infrastructures will be the backbone to facilitate new communication demands. Thus, its development needs to keep pace with the ICT industry. Because telemedicine is still relatively new, the industry needs to generate new scenarios as testbeds for these newer technologies, Lu explained. These new use cases, whether they’re generated naturally by demand or synthetically, will help push along the development of these new technologies.

For example, 5G’s bandwidth massive bandwidth improvements could remove the bottleneck present in real-time communication and medical imaging. Increased bandwidth enables more immediate, higher quality remote checkups. It could also simplify the diagnostic process by enabling services like real-time remote full-body scanning, a procedure that generates large image files.

4G’s high latency, unreliableness and error rate presents challenges in realising telemedicine’s true potential. These issues could be solved by migrating to 5G.

Another factor that affects performance is latency. The ITU-R defined Ultra-Reliable Low Latency Communications (URLLC) as one of 5G’s main applications. In a highly-technical and mission-critical application like healthcare, low latency is a key concern.

“The 4G technologies are not enough to meet our needs,” Lu pointed out. “In the past, we compressed the data to make it fit into the smaller pipe. And the 4G latency was not acceptable. For 5G, the latency is very low. It’s almost a real-time so the doctors can get real-time data transfer to provide better services to the patients, especially when we talk about the complex and difficult.”

He specified remote monitoring, remote analysis, remote robotics, and remote visit as crucial areas of focus. He said that while doctors understand the benefits of remote practices, vendors are not yet prepared to manufacture this equipment due to inadequate certification and qualifications.

There are more than 13,000 secondary–or specialist–hospitals in China, and adding telemedicine capabilities to them all would incur significant cost. With that said, developing remote healthcare also stimulates new business opportunities for carriers.

Moreover, Lu said that the entire network stack–the slices, transport network and edge computing could all benefit from being supported by 5G technologies. The benefit isn’t limited to telemedicine but the communication industry as a whole.

In addition, 5G could help to streamline a hospital’s logistic operations like payment. China’s mobile payment system is the most established in the world by far. In 2019, over 81 per cent of the country’s smartphone owners frequently pay through proximity mobile systems such as QR codes. But while China’s digital commerce is being developed at an explosive pace, hospitals of the future will demand more robust transaction support.

“We need to have innovation in the healthcare service provision,” said Lu. “And and we also need to have some payment assurance like basic medical insurance, commercial insurance, and also some banking services support. And that has high requirements on computing on storage and on data processing. These requirements will only be satisfied by adding new ICT technologies.”

IBM Think 2020: How 5G can benefit satellite networks

The ubiquity of 5G will cover everything from IoT sensors, to smart devices, to cloud communication. But the technology that spawned from 5G development can extend well beyond just global networks. At IBM Think 2020, MIT Professor Muriel Médard spoke about how satellites can also benefit from the development of 5G.

Also:

 

One of 5G’s plethora of features is a coding technique called Random Linear Network Coding (RLNC). Médard defined network coding as a “mathematical manipulation of data that to be reliably retrieved, reliably represented and transported in a network”.

In essence, through complex encoding and decoding techniques, RLNC can reassemble lost packets in a data stream by the receiver. This reduces the need to resend data when they become lost. It can increase reliability when sending sensitive information like financial data, as well as be applied to monitor sensors and vehicles in remote areas.

RLNC’s encoding, transmission, and decoding process. Source: Random Linear Network Coding for 5G Mobile Video Delivery

As a backgrounder, to transmit large quantities of data between two devices, the information must first be cut up and encapsulated into packets. Sending data via small packets provides many benefits, including higher efficiency and increased reliability. If data becomes corrupted or lost during transmission, only the affected packets need to be resent rather than the entire dataset.

In urban centres, radio towers are relatively near the user, thus creating stronger signals that are more resistant to environmental factors. In satellite networks, however, the long-distance between the sender and the receiver renders it vulnerable to disruptions from inclement weather. In addition, high latency compounds the finicky signal; if data becomes lost during transit, it will take longer to resend.

Despite its shortcomings, underserved communities in Canada and around the world rely on satellite to stay connected. Due to geographical and business limitations, it’s not always feasible to pull landlines and install towers to these locations. It’s critical for satellite network technologies to advance in parallel with the networks back on the ground.

Boris Johnson gets final warning with Huawei 5G verdict imminent

Former senior government figures voice security fears as PM chairs meeting of NSC

Former ministers have sounded their final warnings to Boris Johnson about the Chinese telecoms firm Huawei ahead of his expected decision on whether it will play a part in the UK’s 5G network.

The prime minister will chair a meeting of the national security council (NSC) later on Tuesday before making a judgment on the firm’s future in the country after months of concern around security, including from the US president, Donald Trump.

5G is the next generation mobile phone network and it promises much higher connection speeds, lower latency (response times) and to be more reliable than the creaking 4G networks we have now.

Huawei is a Chinese telecoms company founded in 1987. US officials believe it poses a security risk because the Chinese government will make the firm engineer backdoors in its technology, through which information could be accessed by Beijing. Donald Trump has banned US companies from sharing technology with Huawei and has been putting pressure on other nations to follow suit.

Continue reading...

Cyber Attacks are the Norm

By Babur Nawaz Khan, Product Marketing, A10 Networks

As we 2019, its time to have a look at the year 2020 and what it would have in store for enterprises.

Since we are in the business of securing our enterprise customers’ infrastructures, we keep a close eye on how the security and encryption landscape is changing so we can help our customers to stay one step ahead.

In 2019, ransomware made a comeback, worldwide mobile operators made aggressive strides in the transformation to 5G, and GDPR achieved its first full year of implementation and the industry saw some of the largest fines ever given for massive data breaches experienced by enterprises.

2020 will no doubt continue to bring a host of the not new, like the continued rash of DDoS attacks on government entities and cloud and gaming services, to the new and emerging. Below are just a few of the trends we see coming next year.

Ransomware will increase globally through 2020
Ransomware attacks are gaining widespread popularity because they can now be launched even against smaller players. Even a small amount of data can be used to hold an entire organisation, city or even country for ransom. The trend of attacks levied against North American cities and city governments will only continue to grow.

We will see at least three new strains of ransomware types introduced:

  • Modular or multi-leveled/layered ransomware and malware attacks will become the norm as this evasion technique becomes more prevalent. Modular attacks use multiple trojans and viruses to start the attack before the actual malware or ransomware is eventually downloaded and launched 
  • 70% of all malware attacks will use encryption to evade security measures (encrypted malware attacks)
To no surprise, the cyber security skills gap will keep on widening. As a result, security teams will struggle with creating fool-proof policies and leveraging the full potential of their security investments

Slow Adoption of new Encryption Standards
Although TLS 1.3 was ratified by the Internet Engineering Taskforce in August of 2018, we won’t see widespread or mainstream adoption: less than 10% of websites worldwide will start using TLS 1.3. TLS 1.2 will remain relevant, and therefore will remain the leading TLS version in use globally since it has not been compromised yet, it supports PFS, and the industry is generally slow when it comes to adopting new standards. Conversely, Elliptical-curve cryptology (ECC) ciphers will see more than 80% adoption as older ciphers, such as RSA ciphers, are disappearing.

Decryption: It’s not a Choice Any Longer
TLS decryption will become mainstream as more attacks leverage encryption for infection and data breaches. Since decryption remains a compute-intensive process, firewall performance degradation will remain higher than 50% and most enterprises will continue to overpay for SSL decryption due to lack of skills within the security teams. To mitigate firewall performance challenges and lack of skilled staff, enterprises will have to adopt dedicated decryption solutions as a more efficient option as next-generation firewalls (NGFWs) continue to polish their on-board decryption capabilities

Cyber attacks are indeed the new normal. Each year brings new security threats, data breaches and operational challenges, ensuing that businesses, governments and consumers have to always be on their toes. 2020 won’t be any different, particularly with the transformation to 5G mobile networks and the dramatic rise in IoT, by both consumers and businesses. The potential for massive and widespread cyber threats expands exponentially.

Let’s hope that organisations, as well as security vendors, focus on better understanding the security needs of the industry, and invest in solutions and policies that would give them a better chance at defending against the ever-evolving cyber threat landscape.

Accelerated Digital Innovation to impact the Cybersecurity Threat Landscape in 2020

Its December and the Christmas lights are going up, so it can't be too early for cyber predictions for 2020.   With this in mind, Richard Starnes, Chief Security Strategist at Capgemini, sets out what the priorities will be for businesses in 2020 and beyond.


Accelerated digital innovation is a double-edged sword that will continue to hang over the cybersecurity threat landscape in 2020.  As businesses rapidly chase digital transformation and pursue the latest advancements in 5G, cloud and IoT, they do so at the risk of exposing more of their operations to cyber-attacks. These technologies have caused an explosion in the number of end-user devices, user interfaces, networks and data; the sheer scale of which is a headache for any cybersecurity professional. 

In order to aggressively turn the tide next year, cyber analysts can no longer avoid AI adoption or ignore the impact of 5G. 

AI Adoption
Hackers are already using AI to launch sophisticated attacks – for example AI algorithms can send ‘spear phishing’ tweets six times faster than a human and with twice the success. In 2020, by deploying intelligent, predictive systems, cyber analysts will be better positioned to anticipate the exponentially growing number of threats.

The Convergence of IT and OT
At the core of the Industry 4.0 trend is the convergence of operations technology (OT) and information technology (IT) networks, i.e. the convergence of industrial and traditional corporate IT systems. While this union of these formerly disparate networks certainly facilitates data exchange and enables organisations to improve business efficiency, it also comes with a host of new security concerns.

5G and IoT
While 5G promises faster speed and bandwidth for connections, it also comes with a new generation of security threats. 5G is expected to make more IoT services possible and the framework will no longer neatly fit into the traditional security models optimised for 4G. Security experts warn of threats related to the 5G-led IoT growth anticipated in 2020, such as a heightened risk of Distributed Denial-of-Service (DDoS) attacks.

Death of the Password
2020 could see organisations adopt new and sophisticated technologies to combat risks associated with weak passwords.

More Power to Data Protection Regulations
In 2020, regulations like GDPR, The California Consumer Privacy Act and PSD2 are expected to get harsher. We might also see announcements of codes of conduct specific to different business sectors like hospitality, aviation etc. All this will put pressure on businesses to make data security a top consideration at the board level.