Monthly Archives: July 2016

Infosec Writers

Got a topic you've become very knowledgeable about and would like to share your expertise? Want to add to the cumulative knowledge base of InfoSec/NetSec? You can write and upload your paper(s) to infosecwriters.com, and if it meets their criteria for suitability, have it published on their site.

http://infosecwriters.com/

Zepto Ransomware Packed into WSF Spam

ThreatTrack Labs has recently observed a surge of spam containing a zip attachment with a WSF (Windows Scripting File) to deliver Zepto ransomware. This tactic is a change from the common JavaScript and macro documents being spammed previously.

Here are actual emails featuring familiar social engineering tactics:

ransomware spam infected WSF attachment

ransomware spam infected WSF attachment

ransomware spam infected WSF attachment

The zip attachments contain the WSF.

infected WSF file

 

An Interactive Analysis with ThreatAnalyzer

To see what we’re dealing with, we turned to ThreatTrack’s malware analysis sandbox ThreatAnalyzer.

We extracted the WSF, submitted it to ThreatAnalyzer and generated the following threat analysis:

Zepto ransomware analysis

Since this is a script, we are more concerned with the call tree from WScript.exe. One notable result, encircled above, is the number of modified files. This most indicates a high likelihood that this could either be a virus or ransomware. And considering the proliferation of ransomware attacks lately, that’s our biggest concern.

There are two captured screen shots from our analysis.

Zepto ransomware analysis infection screen

Expanding the MODIFIED FILES shows this result.

ransomware modified files

The files affected are renamed with a “.zepto” filename extension.

Given the screenshot and Modified Files artifacts, we can confidently say that this is a variant of the Zepto ransomware.

The WSF Script Behavior

Selecting C:\Windows\System32\WScript.exe (3388) shows results of the behaviors done by the WSF alone.

ransomware sandbox analysis

ransomware sandbox analysis

It shows that the script created two files and made an HTTP connection to mercumaya.net.

Let’s look at the two files in the Temp folder.

This is the binary view of UL43Fok40ii file

Zepto ransomware encrypted code

This is the UL43Fok40ii.exe file.  A complete PE file format.

ransomware code processes analysis

Having only a difference of 4 bytes in size of 208,008 bytes and 208,004 bytes suggests that the file without the .exe filename extension was decrypted to form the PE executable file. Afterwards, the PE executable was run by the WSF script with the argument: “321”.

ransomware sandbox analysis

 

Expanding the Network connections.

ransomware sandbox analysis

ransomware sandbox analysis

With the com.my suffix from the resolved host, the server seems to be located in Malaysia.

The HTTP header also indicates that the Content-Length was 208,008 bytes. This is the same file size of the encrypted file.

The WSF file executed by the WScript.exe simply downloaded then decrypted a Windows PE file then executed it.

The Downloaded Executable PE file

Now we turn our focus on the behavior of the executable file UL43Fok40ii.exe.

Zepto ransomware sandbox analysis

  • Posted some info to a server somewhere in Ukraine.
  • Accessed hundreds of files.
  • Executed the default browser (Chrome was set as the default browser)
  • Deleted a file using cmd.exe

ransomware sandbox analysis

  • Connected to shares
  • Dropped the ransom instructions (_HELP_instructions.html). For every folder where a file got encrypted for ransom, a copy of the _HELP_instructions.html is created.

ransomware sandbox analysis help me

  • Created 10 threads

The data posted to the Ukraine site is encrypted. Most likely this contains the id and key used to encrypt the files.

i

TA displays the raw data in hexadecimal form. A partially converted version of the raw data is shown below:

j1

 

This malware also renamed a lot of files. This is the behavior that encrypts files while renaming the file using a GUID filename with a “.zepto” filename suffix.

k

In the manner of searching files, it primarily targets the phone book file before traversing from the root directory of the drive.

l

Also some notable files that were created. The captured screenshot is the contents of the _HELP_instructions.bmp file.

m

This malware sample attempts to move its running executable to a file in the Temp folder.

q

With Chrome set as the default browser,  the malware opens the file _HELP_instructions.html that it previously created in the Desktop.  It also, deletes the malware copy from the Temp folder probably a part of it’s clean up phase.

o

Here’s what _HELP_instructions.html looks like when opened in a browser.

p

The process call tree under Chrome.exe are most likely invoked by the browser and not part of this malware.

Prevent Ransomware

Syndicates behind today’s ransomware like Zepto are aggressively finding various ways of infiltrating businesses and government organizations alike. In this case, they attacked by using Windows Scripting Files in hopes to pass through email gateways that don’t block WSF files in attachments.

To protect your organization, deploy solutions that protect you from sophisticated and pervasive threats like ransomware, including advanced endpoint protection like VIPRE Endpoint Security, a malware behavior analysis tool like ThreatAnalyzer, and solutions to detect and disrupt active cyber attacks like ThreatSecure. And regularly back up all your critical data.

VIPRE antivirus detections for this threat include Trojan.Locky.AX and Trojan.Win32.Generic!BT.

The post Zepto Ransomware Packed into WSF Spam appeared first on ThreatTrack Security Labs Blog.

Cerber: Analyzing a Ransomware Attack Methodology To Enable Protection

Ransomware is a common method of cyber extortion for financial gain that typically involves users being unable to interact with their files, applications or systems until a ransom is paid. Accessibility of cryptocurrency such as Bitcoin has directly contributed to this ransomware model. Based on data from FireEye Dynamic Threat Intelligence (DTI), ransomware activities have been rising fairly steadily since mid-2015.

On June 10, 2016, FireEye’s HX detected a Cerber ransomware campaign involving the distribution of emails with a malicious Microsoft Word document attached. If a recipient were to open the document a malicious macro would contact an attacker-controlled website to download and install the Cerber family of ransomware.

Exploit Guard, a major new feature of FireEye Endpoint Security (HX), detected the threat and alerted HX customers on infections in the field so that organizations could inhibit the deployment of Cerber ransomware. After investigating further, the FireEye research team worked with security agency CERT-Netherlands, as well as web hosting providers who unknowingly hosted the Cerber installer, and were able to shut down that instance of the Cerber command and control (C2) within hours of detecting the activity. With the attacker-controlled servers offline, macros and other malicious payloads configured to download are incapable of infecting users with ransomware.

FireEye hasn’t seen any additional infections from this attacker since shutting down the C2 server, although the attacker could configure one or more additional C2 servers and resume the campaign at any time. This particular campaign was observed on six unique endpoints from three different FireEye endpoint security customers. HX has proven effective at detecting and inhibiting the success of Cerber malware.

Attack Process

The Cerber ransomware attack cycle we observed can be broadly broken down into eight steps:

  1. Target receives and opens a Word document.
  2. Macro in document is invoked to run PowerShell in hidden mode.
  3. Control is passed to PowerShell, which connects to a malicious site to download the ransomware.
  4. On successful connection, the ransomware is written to the disk of the victim.
  5. PowerShell executes the ransomware.
  6. The malware configures multiple concurrent persistence mechanisms by creating command processor, screensaver, startup.run and runonce registry entries.
  7. The executable uses native Windows utilities such as WMIC and/or VSSAdmin to delete backups and shadow copies.
  8. Files are encrypted and messages are presented to the user requesting payment.

Rather than waiting for the payload to be downloaded or started around stage four or five of the aforementioned attack cycle, Exploit Guard provides coverage for most steps of the attack cycle – beginning in this case at the second step.

The most common way to deliver ransomware is via Word documents with embedded macros or a Microsoft Office exploit. FireEye Exploit Guard detects both of these attacks at the initial stage of the attack cycle.

PowerShell Abuse

When the victim opens the attached Word document, the malicious macro writes a small piece of VBScript into memory and executes it. This VBScript executes PowerShell to connect to an attacker-controlled server and download the ransomware (profilest.exe), as seen in Figure 1.

Figure 1. Launch sequence of Cerber – the macro is responsible for invoking PowerShell and PowerShell downloads and runs the malware

It has been increasingly common for threat actors to use malicious macros to infect users because the majority of organizations permit macros to run from Internet-sourced office documents.

In this case we observed the macrocode calling PowerShell to bypass execution policies – and run in hidden as well as encrypted mode – with the intention that PowerShell would download the ransomware and execute it without the knowledge of the victim.

Further investigation of the link and executable showed that every few seconds the malware hash changed with a more current compilation timestamp and different appended data bytes – a technique often used to evade hash-based detection.

Cerber in Action

Initial payload behavior

Upon execution, the Cerber malware will check to see where it is being launched from. Unless it is being launched from a specific location (%APPDATA%\&#60GUID&#62), it creates a copy of itself in the victim's %APPDATA% folder under a filename chosen randomly and obtained from the %WINDIR%\system32 folder.

If the malware is launched from the specific aforementioned folder and after eliminating any blacklisted filenames from an internal list, then the malware creates a renamed copy of itself to “%APPDATA%\&#60GUID&#62” using a pseudo-randomly selected name from the “system32” directory. The malware executes the malware from the new location and then cleans up after itself.

Shadow deletion

As with many other ransomware families, Cerber will bypass UAC checks, delete any volume shadow copies and disable safe boot options. Cerber accomplished this by launching the following processes using respective arguments:

Vssadmin.exe "delete shadows /all /quiet"

WMIC.exe "shadowcopy delete"

Bcdedit.exe "/set {default} recoveryenabled no"

Bcdedit.exe "/set {default} bootstatuspolicy ignoreallfailures

Coercion

People may wonder why victims pay the ransom to the threat actors. In some cases it is as simple as needing to get files back, but in other instances a victim may feel coerced or even intimidated. We noticed these tactics being used in this campaign, where the victim is shown the message in Figure 2 upon being infected with Cerber.

Figure 2. A message to the victim after encryption

The ransomware authors attempt to incentivize the victim into paying quickly by providing a 50 percent discount if the ransom is paid within a certain timeframe, as seen in Figure 3.

 

 

Figure 3. Ransom offered to victim, which is discounted for five days

Multilingual Support

As seen in Figure 4, the Cerber ransomware presented its message and instructions in 12 different languages, indicating this attack was on a global scale.

Figure 4.   Interface provided to the victim to pay ransom supports 12 languages

Encryption

Cerber targets 294 different file extensions for encryption, including .doc (typically Microsoft Word documents), .ppt (generally Microsoft PowerPoint slideshows), .jpg and other images. It also targets financial file formats such as. ibank (used with certain personal finance management software) and .wallet (used for Bitcoin).

Selective Targeting

Selective targeting was used in this campaign. The attackers were observed checking the country code of a host machine’s public IP address against a list of blacklisted countries in the JSON configuration, utilizing online services such as ipinfo.io to verify the information. Blacklisted (protected) countries include: Armenia, Azerbaijan, Belarus, Georgia, Kyrgyzstan, Kazakhstan, Moldova, Russia, Turkmenistan, Tajikistan, Ukraine, and Uzbekistan.

The attack also checked a system's keyboard layout to further ensure it avoided infecting machines in the attackers geography: 1049—Russian, ¨ 1058—Ukrainian, 1059—Belarusian, 1064—Tajik, 1067—Armenian, 1068—Azeri, (Latin), 1079—Georgian, 1087—Kazakh, 1088—Kyrgyz (Cyrillic), 1090—Turkmen, 1091—Uzbek (Latin), 2072—Romanian (Moldova), 2073—Russian (Moldova), 2092—Azeri (Cyrillic), 2115—Uzbek (Cyrillic).

Selective targeting has historically been used to keep malware from infecting endpoints within the author’s geographical region, thus protecting them from the wrath of local authorities. The actor also controls their exposure using this technique. In this case, there is reason to suspect the attackers are based in Russia or the surrounding region.

Anti VM Checks

The malware searches for a series of hooked modules, specific filenames and paths, and known sandbox volume serial numbers, including: sbiedll.dll, dir_watch.dll, api_log.dll, dbghelp.dll, Frz_State, C:\popupkiller.exe, C:\stimulator.exe, C:\TOOLS\execute.exe, \sand-box\, \cwsandbox\, \sandbox\, 0CD1A40, 6CBBC508, 774E1682, 837F873E, 8B6F64BC.

Aside from the aforementioned checks and blacklisting, there is also a wait option built in where the payload will delay execution on an infected machine before it launches an encryption routine. This technique was likely implemented to further avoid detection within sandbox environments.

Persistence

Once executed, Cerber deploys the following persistence techniques to make sure a system remains infected:

  • A registry key is added to launch the malware instead of the screensaver when the system becomes idle.
  • The “CommandProcessor” Autorun keyvalue is changed to point to the Cerber payload so that the malware will be launched each time the Windows terminal, “cmd.exe”, is launched.
  • A shortcut (.lnk) file is added to the startup folder. This file references the ransomware and Windows will execute the file immediately after the infected user logs in.
  • Common persistence methods such as run and runonce key are also used.
A Solid Defense

Mitigating ransomware malware has become a high priority for affected organizations because passive security technologies such as signature-based containment have proven ineffective.

Malware authors have demonstrated an ability to outpace most endpoint controls by compiling multiple variations of their malware with minor binary differences. By using alternative packers and compilers, authors are increasing the level of effort for researchers and reverse-engineers. Unfortunately, those efforts don’t scale.

Disabling support for macros in documents from the Internet and increasing user awareness are two ways to reduce the likelihood of infection. If you can, consider blocking connections to websites you haven’t explicitly whitelisted. However, these controls may not be sufficient to prevent all infections or they may not be possible based on your organization.

FireEye Endpoint Security with Exploit Guard helps to detect exploits and techniques used by ransomware attacks (and other threat activity) during execution and provides analysts with greater visibility. This helps your security team conduct more detailed investigations of broader categories of threats. This information enables your organization to quickly stop threats and adapt defenses as needed.

Conclusion

Ransomware has become an increasingly common and effective attack affecting enterprises, impacting productivity and preventing users from accessing files and data.

Mitigating the threat of ransomware requires strong endpoint controls, and may include technologies that allow security personnel to quickly analyze multiple systems and correlate events to identify and respond to threats.

HX with Exploit Guard uses behavioral intelligence to accelerate this process, quickly analyzing endpoints within your enterprise and alerting your team so they can conduct an investigation and scope the compromise in real-time.

Traditional defenses don’t have the granular view required to do this, nor can they connect the dots of discreet individual processes that may be steps in an attack. This takes behavioral intelligence that is able to quickly analyze a wide array of processes and alert on them so analysts and security teams can conduct a complete investigation into what has, or is, transpiring. This can only be done if those professionals have the right tools and the visibility into all endpoint activity to effectively find every aspect of a threat and deal with it, all in real-time. Also, at FireEye, we go one step ahead and contact relevant authorities to bring down these types of campaigns.

Click here for more information about Exploit Guard technology.

How to remove your email address from Windows 10’s login screen

CVE-2016-0189 (Internet Explorer) and Exploit Kit



Spotted by Symantec in the wild  patched with MS16-051 in may 2016, CVE-2016-0189 is now being integrated in Exploit Kit.

Neutrino Exploit Kit :
Here 2016-07-13 but i am being told that i am late to the party.
It's already [CN] documented here

Neutrino after ScriptJS redirector dropping Locky Affid 13- 2016-07-13


Flash sample in that pass : 85b707cf63abc0f8cfe027153031e853fe452ed02034b792323eecd3bc0f7fd
(Out of topic payload : 300a51b8f6ad362b3e32a5d6afd2759a910f1b6608a5565ddee0cad4e249ce18 - Locky Affid 13 )


Thanks to Malc0de for invaluable help here :)

Files Here: Neutrino_CVE-2016-0189_160714 (Password is malware - VT Link)

Sundown :
Some evidence of CVE-2016-0189 being integrated in Sundown were spotted on jul 15 by @criznash
On the 16th I recorded a pass where the CVE-2016-0189 had his own calls :

Sundown exploiting CVE-2016-0189 to drop Smokebot on the 2016-07-16
(Out of topic payload :  61f9a4270c9deed0be5e0ff3b988d35cdb7f9054bc619d0dc1a65f7de812a3a1 beaconing to : vicolavicolom.com | 185.93.185.224 )
Files : Sundown_CVE-2016-0189_160716 (password is malware)

RIG:
I saw it on 2016-09-12 but might have appeared before.
RIG successfully exploiting CVE-2016-0189 - 2016-09-12

CVE-2016-0189 from RIG after 3 step decoding pass

Files : RIG_2016-0189_2016-09-12 (password is malware)

Magnitude:
Here pass from 2016-09-16 but is inside since at least 2016-09-04 (Source : Trendmicro - Thanks)

CVE-2016-0189 in Magnitude on 2016-09-16
Sorry i can't share fiddler publicly in that case (Those specific one would give to attack side too much information about some of the technics that can be used - You know how to contact me)

Out of topic Payload:  Cerber
a0d9ad48459933348fc301d8479580f8
5298ca5e9933bd20e051b81371942b2c

GrandSoft:
Spotted first on 2017-09-22 here is traffic from 2018-01-30 on : Win10 Build 10240 - IE11.0.10240.16431 - KB3078071

CVE-2016-0189 in GrandSoft on 2018-01-30
Out of topic Payload:  GandCrab Ransomware
a15c48c74a47e81c1c8b26073be58c64f7ff58717694d60b0b5498274e5d9243

Fiddler here : GrandSoft_WorkingonIE11_Win10d.zip (pass is malware)


Edits :
2016-07-15 a previous version was stating CVE-2015-5122 for nw23. Fixed thanks to @dnpushme
2016-07-20 Adding Sundown.
2016-09-17 Adding RIG
2016-09-19 Adding Magnitude
2018-01-30 Adding GrandSoft (but appeared there on 2017-09-22)

Read More :
Patch Analysis of CVE-2016-0189 - 2016-06-22 - Theori
Neutrino EK: fingerprinting in a Flash - 2016-06-28 - Malwarebytes

Post publication Reading :
Exploit Kits Quickly Adopt Exploit Thanks to Open Source Release - 2016-07-14 - FireEye

A Look at the Cerber Office 365 Ransomware

Reports of a Zero-day attack affecting numerous Office 365 users emerged late last month (hat tip to the researchers at Avanan), and the culprit was a new variant of the Cerber ransomware discovered earlier this year. As with the other Zero-day threats that have been popping-up like mushrooms of late, the main methods of infection is through the use of Office macros.

This blog provides an analysis on the Cerber variant using traditional reverse-engineering and ThreatTrack’s newest version of our malware analysis sandbox, ThreatAnalyzer 6.1.

Analyzing Cerber

Reverse engineering in general, more often than not, requires that one gets a broad view as to what the target is doing. Whether you’re analyzing a malware sample or trying to figure what a function does from an obfuscated code, it is best to get the general “feel” of your target before narrowing down to the specifics.

ThreatAnalyzer is a sandbox that executes a program, file or URL in a controlled, monitored environment and provides a detailed report enabling the researcher or analyst to get a good look as to what the sample will do at run time. It is also worth noting that a sandbox is a good tool for generating Threat Intelligence to quickly get IOCs (Indicators of Compromise). The latest version of this sandbox, ThreatAnalyzer 6.1, has a built-in behavioral detection mechanism that enables users to see the general behavior of a sample and based on those particular set of behaviors, predict if the program in question is malicious or benign in nature.

Fig: ThreatAnalyzer’s unique behavior determination engine

Fig: ThreatAnalyzer’s unique behavior determination engine

 

Fig 1: ThreatAnalyzer 6.1 in action

Fig 1: ThreatAnalyzer 6.1 in action

Looking at the figure above, on the analysis screen, ThreatAnalyzer 6.1 has provided the following vital information on this particular sample:

  1. Determine that the sample is detected as malicious on 3 different fronts:
    1. ThreatIQ (our integrated threat intelligence server) observers the sample trying to beacon to blacklisted URLs
    2. The sample is detected by at least 1 or multiple antivirus engine(s)
    3. Based on the behavior that it performed, has a high probability that the sample is malicious
  2. Shows the researcher/user the changes in Registry, IO (File), Network attempts it made, and processes that it spawned
  3. Compacts all detailed information that it has gathered into a downloadable PDF or XML report. If a user chooses, he can download the archive which includes the detailed report, any significant files that was generated, screenshots of the windows spawned and a copy of the PCAP file if any network activities were logged

ThreatAnalyzer also provides a detailed report of the sample you analyzed in XML, JSON or PDF format. These reports contain the processes that were spawned, what files were modified, created or accessed, registries that were manipulated, objects that were created and any network connections that were made.

If we look further at the particular XML file of the sample we analyzed, we can gather the following activities:

  • Spawned WINWORD.EXE (normal since we fed a DOTM file), but the process tree shows that it spawned
    • Cmd.exe
    • Wscript.exe
  • Created a randomly named VBS file in %appdata%
    • %appdata%\15339.vbs
    • Cmd.exe /V /C set “GSI=%APPDATA%\%RANDOM%.vbs” (for %i in (“DIm RWRL” “FuNCtioN GNbiPp(Pt5SZ1)” “EYnt=45” “GNbiPp=AsC(Pt5SZ1)” “Xn1=52” “eNd fuNCtiON” “SUb OjrYyD9()”Seeded another cmd.exe calling the VBS file
  • Made an attempt to connect to
    • httx://solidaritedeproximite.org/mhtr.jpg
  • Made a randomly named .TMP in %appdata% and executed it
    • Hash: ee0828a4e4c195d97313bfc7d4b531f1

These are highly suspicious activities given that we were trying to analyze an Office document file. The behavior above cannot be classified as normal. So the next time you’re nervous on opening an attachment, even if it came from a person or organization you know, feed it to a sandbox like ThreatAnalyzer and have a look before running it on your production machine.

Good ol’ reverse engineering

Office 365 Enable Content

Office 365 Enable Content

Looking at how this ransomware was coded, it will not only infect Office 365 users but users of Office 2007 and above. The macro inside the Document_Open function will auto-execute once the malicious office attachment is opened. But this is also dependent on whether the macro settings is enabled or in earlier Office versions, security is set to low. And quite possibly in an attempt to slow down the analysis process and bypass traditional AV signatures, each iteration of this Cerber macro variant is obfuscated.

Auto-execution macro inside Cerber macro

Auto-execution macro inside Cerber macro

The macro will then proceed to the creation of a script located in %appdata%. The VBS is also obfuscated but luckily not encrypted. It is interesting to note a particular action that may or may not be an intended feature to bypass behavioral detection. It uses the Timer function to generate a random integer and compare it to a self-generated variable, all the while; this action will be the condition when code to download the cryptor component will ensue.

Using built in network features of VBS; it will attempt to connect to a remote server and attempt to download a particular file.

httx://solidaritedeproximite.org/mhtr.jpg

This may seem harmless as it is just a simple JPG file, right? Well, the VBS code also indicates that it will write whatever the contents of that file, save it to a .TMP in %appdata% and execute it. Although this technique has been used by other malware and dates back years ago, this seems interesting.

Download the file, save it, then Run

Download the file, save it, then Run

Md5 Hash: ee0828a4e4c195d97313bfc7d4b531f1

The downloaded file is the cryptor part of the Cerber ransomware. This program is the one responsible for scanning and encrypting target files on a victim’s system. The full analysis of this component will be discussed on a separate blog. It is interesting to note that the downloaded cerber executable will encrypt your files even in the absence of internet connection. The code inside the EXE indicates that it does not connect to a remote server (unlike the ones before it e.g. crytowall, locky, Teslacrypt, etc.) to encrypt the victim’s files.

Once a system is successfully infected it will display the following in the desktop.

And spawn an instance of your browser containing the message:

And play a sound “your documents, photos, databases, and other important files have been encrypted” in a robot voice.

Infection Summary

Flow of the Cerber attack scenario

Flow of the Cerber attack scenario

  1. A spear-phishing email that contains a malicious Office attachment arrives.
  2. If the user opens the email, executed the attachment AND the macro setting for Office is set to enabled, the macro will execute spawning another VBS script.
  3. The script will contact a remote server, downloads and execute the cryptor part of the Cerber ransomware.
  4. Proceeds on scanning and encrypting the user’s files.
  5. Displays a notice that your system has been infected by Cerber ransomware.

The post A Look at the Cerber Office 365 Ransomware appeared first on ThreatTrack Security Labs Blog.

IRS Phone Scams

I received the following voicemail on my home number today.

“The reason of this call is to inform you that the IRS is filing lawsuit against you to get more information about this case file. Please call immediately on our department number 347-637-6615. I repeat 347-637-6615. Thank you.”

While tax season is the high season for this particular scam, “The IRS is filling a lawsuit against you” strikes fear into the heart of the recipient any time of year.  Scams are designed to get you to take action.    Even when you’re familiar with scams like this, you take pause.

The IRS will send written notice of tax due.  Phone calls like this are not the norm.    For more information check out this this alert at the IRS website.

The post IRS Phone Scams appeared first on Roger's Information Security Blog.

How to tell if your Android phone has spyware

A reader whom I won’t name worries that his cousin watches what he does on his Android phone. The cousin actually told him so.

It’s possible that your cousin is just messing with your head. Ask for proof—such as texts you’ve sent and received.

On the other hand, they may actually be spying on your phone. There are a surprising number of Android apps that can do just that.

[Have a tech question? As Answer Line transitions from Lincoln Spector to Josh Norem, you can still send your query to answer@pcworld.com.]

But first, let me clarify one thing: No one is tracking you via your phone’s IP address. Take your phone on a morning jog, and its IP address  will change three or four times before you get home.

To read this article in full, please click here