Patching

There’s new research that demonstrates security vulnerabilities in all of the AMD and Intel chips with micro-op caches, including the ones that were specifically engineered to be resistant to the Spectre/Meltdown attacks of three years ago.

Details:

The new line of attacks exploits the micro-op cache: an on-chip structure that speeds up computing by storing simple commands and allowing the processor to fetch them quickly and early in the speculative execution process, as the team explains in a writeup from the University of Virginia. Even though the processor quickly realizes its mistake and does a U-turn to go down the right path, attackers can get at the private data while the processor is still heading in the wrong direction…

Read More New Spectre-Like Attacks

Apple just patched a MacOS vulnerability that bypassed malware checks.

The flaw is akin to a front entrance that’s barred and bolted effectively, but with a cat door at the bottom that you can easily toss a bomb through. Apple mistakenly assumed that applications will always have certain specific attributes. Owens discovered that if he made an application that was really just a script—code that tells another program what do rather than doing it itself—and didn’t include a standard application metadata file called “info.plist,” he could silently run the app on any Mac. The operating system wouldn’t even give its most basic prompt: “This is an application downloaded from the Internet. Are you sure you want to open it?”…

Read More Serious MacOS Vulnerability Patched

Researchers found, and Microsoft has patched, a vulnerability in Windows Defender that has been around for twelve years. There is no evidence that anyone has used the vulnerability during that time.

The flaw, discovered by researchers at the security firm SentinelOne, showed up in a driver that Windows Defender — renamed Microsoft Defender last year — uses to delete the invasive files and infrastructure that malware can create. When the driver removes a malicious file, it replaces it with a new, benign one as a sort of placeholder during remediation. But the researchers discovered that the system doesn’t specifically verify that new file. As a result, an attacker could insert strategic system links that direct the driver to overwrite the wrong file or even run malicious code…

Read More Twelve-Year-Old Vulnerability Found in Windows Defender

This report is six months old, and I don’t know anything about the organization that produced it, but it has some alarming data about router security.

Conclusion: Our analysis showed that Linux is the most used OS running on more than 90% of the devices. However, many routers are powered by very old versions of Linux. Most devices are still powered with a 2.6 Linux kernel, which is no longer maintained for many years. This leads to a high number of critical and high severity CVEs affecting these devices.

Since Linux is the most used OS, exploit mitigation techniques could be enabled very easily. Anyhow, they are used quite rarely by most vendors except the NX feature…

Read More Router Security

At the virtual Enigma Conference, Google’s Project Zero’s Maggie Stone gave a talk about zero-day exploits in the wild. In it, she talked about how often vendors fix vulnerabilities only to have the attackers tweak their exploits to work again. From a MIT Technology Review article:

Soon after they were spotted, the researchers saw one exploit being used in the wild. Microsoft issued a patch and fixed the flaw, sort of. In September 2019, another similar vulnerability was found being exploited by the same hacking group.

More discoveries in November 2019, January 2020, and April 2020 added up to at least five zero-day vulnerabilities being exploited from the same bug class in short order. Microsoft issued multiple security updates: some failed to actually fix the vulnerability being targeted, while others required only slight changes that required just a line or two to change in the hacker’s code to make the exploit work again…

Read More On Vulnerability-Adjacent Vulnerabilities